The C# Programmer’s
Study Guide (MCSD)

Exam: 70-483

Ali Asad
Hamza Al

Apress’

The C# Programmer’s
Study Guide (MCSD)

Ali Asad
Hamza Ali

Apress’

The C# Programmer’s Study Guide (MCSD)

Ali Asad Hamza Ali
Sialkot, Pakistan Sialkot, Pakistan
ISBN-13 (pbk): 978-1-4842-2859-3 ISBN-13 (electronic): 978-1-4842-2860-9

DO0I110.1007/978-1-4842-2860-9
Library of Congress Control Number: 2017944951
Copyright © 2017 by Ali Asad and Hamza Ali

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Cover image designed by FreePik

Managing Director: Welmoed Spahr

Editorial Director: Todd Green

Acquisitions Editor: Celestin Suresh John

Development Editor: Anila Vincent and Laura Berendson
Technical Reviewer: Syed Lakhtey Hussnain
Coordinating Editor: Sanchita Mandal

Copy Editor: Larissa shmailo

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM
Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales web
page athttp://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2859-3. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
http://www.apress.com/978-1-4842-2859-3
http://www.apress.com/source-code

Dedicated to my family (Mama[Samina], Papa[Asad], brother[Hamza)],
sisters [Rimsha, Aima, Azma]); and to my dearest friend, Sundus Naveed.
Thank you for supporting me and believing in me. Most importantly, you guys never tried
to change me; instead, you gave me the confidence and the freedom to work on my dreams.
For that, I'm eternally grateful. Thank you!!!

—Ali Asad

Dedicated to my father [Muhammad Arif], who always encourages and supports
me to learn and deliver knowledge, and my whole family (Mother [Yasmeen Tahira)],
my brothers [Adil Ali and Awais Ali], my sister-in-law [Noureen Azmat],
my cute niece [Zoha Adil], my sisters [Iram Suhaib and Aqsa Hamid)],
and my beloved fiancée [Zunaira Shafqat Ali].)

—Hamza Ali

Contents at a Glance

About the AUthOrS.........vcsmimmmismne s ——————————_— Xix
About the Technical REVIEWETccussmmssmsssmssmssmmssssssmssssssmsssssssssssssssssssssssnsssssnns XXi
AcknowIedgmENtScceerrsssssssmnnnnnmmmssssssssssssnssssssssssssssssnnssssssssssssnnnnnnsnssssssssnnnnnns XXiii
INtroduction ..o ——————_—_———_— XXV
FOr@WOIdocisemmsanmmssannsssanssssannsssannsssansssssnnssssnnesssnsssssnnssssnnssssnnssssnnssssnnssssnnnsssnns XXix
Chapter 1: Fundamentals of C #ccucccmmmnnnsmmmmmnssssnmmmmssssnmmsssssnsssssssnsssssssnnnns 1
Chapter 2: Types in CH......ccoccccmmnnsmmnmmmssssnmmmsssssmmmsssssmmsssssssnsssssssssssssssnnssssssnnnnss 39
Chapter 3: Getting Started with Object Oriented Programmingccccunrvssnnnnnns 65
Chapter 4: Advance C#cccccuunsmmmmmmsssssnmmmsssssmmmsssssnmsssssssssssssssssesssssnssssssnnnnnss 95
Chapter 5: Implementing Delegates & Events..........cccuuneemmmmmmnnnnsssssssssssnnssnssnnes 153
Chapter 6: Deep Dive into LINQ.........ccoscemmmmsssmnnnmssssnnssssssssssssssssssssssssssnsssssssnnnes 177
Chapter 7: Manage Object Life CYCI@......cccrrssummmmmssssnnnssssssnnnssssssnnnssssssnnnsssssnnnnss 197
Chapter 8: Multithreaded, Async & Parallel Programming.........ccoussssesnsssssnnnnss 207
Chapter 9: Exception Handling and Validating Application Input...........cccceeeue. 271
Chapter 10: File 1/0 Operationscccuseemmmmsssssnmmssssssnmmssssssnmsssssssssssssssssssssssnnnns 291
Chapter 11: Serialization and Deserialization............ccccmmmmnrrinnnnsssessnnnneennn. 305
Chapter 12: Consume Data........ccccmemmmmmmmmmmmmmssssssnmmmsmmsssssssssssssssssssssssssnnns 319
Chapter 13: Working with Cryptographycccccuneemmmmsssmnnmmmsssssnmsssssssnmsssssnns 347

CONTENTS AT A GLANCE

Chapter 14: Assembly and Reflection.........ccceemmmmnnnmmnmnsssssnnnnnsmmmssssssssnsssmns 365
Chapter 15: Debugging and DiagnoStiCSccoussuessssansssssnsssssnsssssnsssssnsssssnsssssnnssss 395
Chapter 16: Practice Exam QUEeSHIONSccureemmnsssnmnmmssssssnssssssssssssssssssssssssnnnes 423
INA@X iiiiiiisnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnesssssssssnnnnnnnnsssssssssnnnnnnnnesssssssssnnnnnnnnesssssnnn 467

vi

Contents

AhoUt the AUTNOLS.......coueeeeiirreeeirrneeaerrsens s r s aannas s aannnsssnnnnnnnsnnnnnnns Xix

About the Technical REVIEWETccorrmrremmmmmssssssssmmssssssssssssssssssssssssssssssssssssnsnnsssssess XXI

AcknowIedgmENtScceerrsssssssmnnnnnmmmssssssssssssnssssssssssssssssnnssssssssssssnnnnnnsnssssssssnnnnnns XXiii
INtroduction ..o ——————_—_———_— XXV
FOr@WOIdocisemmsanmmssannsssanssssannsssannsssansssssnnssssnnesssnsssssnnssssnnssssnnssssnnssssnnssssnnnsssnns XXix
Chapter 1: Fundamentals of C #ccucccmmmnnnsmmmmmnssssnmmmmssssnmmsssssnsssssssnsssssssnnnns 1
Program Structure & Language Fundamentals...........ccccovveennrennscnesnsesssesesessesssnennens 1
FirSt Program i ..ot as s sttt se st s st st s sssesassssnaes 2
Variables & DA TYPESccccieerrcrrcrre e s e p e e e e p e n e 5

00 T=T = 0] g3 5T 6
EXPIESSION iN Gecveeeeereertesesesesesesserse e saesesaesa s e sa s e sae e saesasaesassesae e sassesassassesassesassesasnsssessssessssesssnsnaes 7

70 TCI 0 T 1 o OO 8

VAF KEYWOIT........eeeeeeeereetscese s a et se e e b s st s e e R e e Re b et R e R e e e Re e e Re e e e ae e et nae e nRenrnnin 9
AITAY IN GH ...ttt e e e e AR AR A AR e AR e AR e e as 9
Implement Program FIOW ... s s s s sne s s s s s s nas 15
DECISION SIIUCTUIE ... 15
DECISION OPEIATOFSc.cvieeccrerececri et s et e e e e s e nennn s 19
L0 1S 0O 20
JUMP SEAtEMENTS IN CH ... 23
MethodS iN CH ..ot ————— 28
NAMEAd AFQUIMEBNL..... .o s a e e s r e s a e e e e e e e e s e e se e e e sae e e se e s e nresnennennnns 29
001010 LA 1Ty R 29

Pass by Reference With ref KEBYWOI...........coecceeeerererererscrtesereesereseseresessesessesessesessesassessssessssesassanaens 30

vii

CONTENTS

Pass by Reference wWith out KEYWOIcocviiiiininincnerrsrse s s sss s ses e sas s s snssnens 31
Use Params Array to Pass Unlimited Method Argument............ccovivnnnnnnnnnnsns s ssnneens 32
1111 1P SRS 33
CO0E CRAIIBNQES.....ccereereerrerreriereerse e saesse s sse s s se s e s e sassaesae s e s e sa e saesaesaesa e snesnennennenes 33
Practice ExXam QUESTIONS..........ooviicinininsss s 35

Chapter 2: Types in C#.........cccnnmmmmmsmmmmmmmmmmmmsssssssssnnsssssssssssssss s 99

UNderstand TYPES.......oucermermrmmsmrss s 39
Creale TYPES ..ot s a e s s a e a e a e sa e r e sa e e r e n e n e enennennennennenan 39
ENUIM 40
SHTUCT s b 42
ClASS ...t 45
Types and Memory Management............ccooeerernrnensessessessee s sessessessessssenns 48
L2 Tc B o 48
REEIENCE TYPE ...vveveeeerrereeeresse s s s R e e s e et e R e e p e e e e nnn s 48
3 T TR 48
L] ¥ T PP 49
30 (] PO SPR 50
SPeCial TYPES INCH ... sa s sa e s sa e a e sn e n s nn e s 50
3L (=T L TL0 =T G 5 50
ANONYMOUS TYPB...eieeieeceetertrres e ser st s sa s e sa e e s s sa e e e e e e e e e e e e e e e e e e e se e e e e e b e e e e e e e e e ne e e e e e e e e e s 51
DYNAIMIC TYPE .ot s e s s e s b s b e s s e e e e e e e b e s e e e e e e b e s e e sa e e e e e e e seese e e e neenaenaennn 52
NUHDIE TYPE .ot a e s e s a e e e e e b e e e e e s e e e e e e e e sa e e e neesaesaenen 53
L3 L[/- 54
TYPE CONVEISIONeeuerererirses s s s s st n s sn s nn s nn s sn e sn e snesnesnnnnnnnnnnn 56
IMPIiCit TYPE CONVEISION......cviceeerectrer st e e e e e e s se s na s 56
EXPIICIt TYPE CONVEISION.cvieieeirerere st se sttt s b et se e s p s e s e ne st s ae e nanns 56
User Defined TYPE CONVEISION ..ot nnn s 57
SUMMEAIY ...ttt e e sa e e s e e e ae e s e ae e e Re e e e ena e nae e n e nnnnnnnas 39
COdE ChallENQES......coeeererrerrrerrrseese e ss s se s s a s s sn s ne e sn s s aenn s enennnneas 60
Practice Exam QUESHONS..........cccovniinn 60

viii

CONTENTS

Chapter 3: Getting Started with Object Oriented Programmingcccsvssseennens 69

Introduction to Object Oriented Programming...........ccccverrnresnsesnesessessssessesessessesessens 65
00T I T | SRS 66
o320 L1 (] 66
ACCESS SPECITIEIS ...uveuereeereererrerererereresserse s e e raeressesas e sae e saesesaesesaeresaesassesae e sae e saesesaenasaenaesenaenenannsnans 66
Data ProteClioN ..o ——————— 70
INNBIIEANCE ...t ————————— 75
Multi Level INNEITANCE ... s 76
L 0Ly T A 77
INEEITACE ...c.ev e ————————————————— 78
Implement interface iIMPICIHY ..o —————— 79
Implement interface eXPlCIHYcoceererrrere et rae e ae e ae e nannens 80
a0 T T 0 S 81
Static POIYMOIPRISIM........cece e s e sr s s p e p e nenrnns 81
Dynamic POIYMOIPRISI.......coviicicecire e r s s r e s r s n e ne e nennnne s 87
114 1] 1P SRS 89
CO0E CRAIIBNQES.....coereereerrerrereersereerse e rsesaessesaesaesaessesaesaesassaesaesaesassassassassassassassassasssssnns 90
Practice Exam QUESHIONS..........cocivniiini 91
Chapter 4: Advance C#cuummmmmmmmmmmmmmmmmssssssssmmmmssssssssssssssssssssssssssssssssnnnns 95
BoxXing and UNDOXING........ccocveerreriminessisessisses s ssss s s e s s s sssssssssssssnssssssssssssssssnees 95
2100 (11 o SRRSO 95
UNDOXING..c.tieiticireseie e s s s s se e e e e s a et e s e e Re e s Re e e ae e R e e e Re e e Re s e s Reea e e e Re e nRenennenenanes 96
Performance of BoXing & UNDOXING.......cccvereiiciesncrs e s sesnssnnnens 97
61T 1 =TT 3T 97
Constraints on Generic TYPe PArameEters.........cooveeeerernercsesesesesiseseseses s sssssssseses s s sessssssssssssssaes 98
GENEIIC MEENOGS........ce e 104
COMBCHION ..o ———— 106
SYSEM.COIIBCHONSocvrriir i —— 106
SyStEM.COIIECHIONS.GENEIICSeveuerereerteerrereraerereresersesersesesaesesseressesaeesaesersesesaessssessssessenessssessesanaens 112
System.Collections.CONCUITENT...........ccouerererererererereres e ree e rae s e e saeras e raesesae e saesesaesas e saesesassesassanaens 120

ix

CONTENTS

Implement Framework INterface..........coeeeeererercre s ens 120
IEnumerable & IENUMErabIE<T> ... 120
IEnumerator & IENUMETAtOr<T> ... e 124
ICollection & ICOIECHIONKT> ..o s 129
1Y | 1) g T 130
IComparable & ICOMPArabIe<T> ... ———— 132
IComparer & ICOMPAIEI<T>ccciierierierirere e sa s e e s ae e e e e e e sa e sa e e e e e e e e e e e e e e e naenes 135
IEQUALADIE T > ... e e e e a e e e e e e R e e e e e e e e e e s 138

Working With SEriNgS ...t e 140
SENGBUIIAET ...t e e e e a et s p e e ne e ae e e ae s 141
SEHNGREAUEceeeeecee e s e s bR e R e e s Re e s e R e e e R e e eRe e eRenrnaeas 141
L1 1L (T PR 142
Enumerate String Methods...........ccvvinn s 143
String.Format Method..........ccvnninn s ——— 147

SUMMEAIY ...t a s e a e e e e e e e e R e e s e n e e ae e e ne e nneas 150

CO0E ChallENQES......ceereeeerrerrerrerreere e sse e ssessesressessessesaesresnssressessessesnesresaesresnssnsnnesnannans 150

Practice Exam QUESHIONS..........cccoreirncnirnirs e 150

Chapter 5: Implementing Delegates & Eventscccuvmmmsmmmsssmsssmssssssassnnsnnns 153

DL 1= 0 T L 153
MUIICAST DEIBGALE......cccveveeecrerrrieeer e e s e s s e s ne e sn e e e 154
Common BUilt-in DEIBGALES........cccceerrrreererrrrresesesrse e se s s s e nsssssnnnnes 157
Variance iN DEIEGALE.........cccverrecrerrree s e a e r e e p e n e 161
Problems With DEIEGALEcoveeererreiecrirrse s s nn s e e 163

AnonymMOoUS Method..........cooiiir e 164

Lambda EXPreSSioNc.cceeeeeeeeere e ssesse e ssessesassssssssssssssssssssssssssnssssssssssssesssnsans 166

Y | R 168
Use Built-in Delegates to Implement EVENLSccccccevicicsennsesesssese e seenens 170
AdVaNTAgES Of EVENTScccoeerreeririrecsesisse s s ss s s s sesssssssssssssssssnsssns 174

E3 1111 1P 7 174

CO0E ChallENQES......ceereeeerrerrerrerreere e ssesse e ssessessessessessessessssressessessssresresnesnesnssnasnessansans 175

Practice EXam QUESTIONS.........ccecverircirerissseresisssseesisssssssssssssessssssesssnssnsessnssnsssssssnsesssns 175

CONTENTS

Chapter 6: Deep Dive into LINQ.......ccccccuvmmmmsssnsmssnnnmss 177

Introduction t0 LINQ ..o 177
WHY WE USE LINQ.......c.eoreeeeeeireeircrie et ss e se s s sn s a e r e e e p e p e e nennnnas 177
TYPES OF LINQ ...t s s e e s e e e e p e r e e e e e e p e e nennnnis 178

Understanding LINQ Operators..........cooceeeerenesessesessessnns 178
FIErING OPEIALON.......ccceeeeeecert et e s s se s ne e e an e e e 179
ProjECtioN OPEIALOr.........c.cceeceererrecertseees s e s s s e e s se e e snnnnnes 179
JOINING OPEIALONcveeeeceeeieeer e e R e e s e e e e nrnnn s 179
GrOUPING OPEIATONccvveeecerirteeer s e s se e s s s e e s ne e e e nsn e s nas 180
Partition OPEIAtOrcccoveeceerrrccir e e s e s ne e e nn e e e 180
LT 01T =L SOOI 180

Understand LINQ SYNTaX.......c.ccovveeerniernsenesssesssesessssessessssessssssssssssessssssssssssssssssssens 181
Y0100)41 VO 181
0 1= T 0 - VO 182

Working With LINQ QUEHIES......cccorerirrrerirnenirs e sss e sss e sas e sassssessnns 183
C# Features 10 SUPPOIE LINQooveieiecereere s sa e e sa e sa e saesa s sa e sa e sa e sa e sa s sa e sa e sn e sa e nn e s 183
Parts of QUEry OPEration ... e e se e r e n s 184
LINQ Operators 10 QUEry Data...........cccoeerrierniernscre e sn s sn s s ns 186

LINQ 10 XIML.....ooeeeeeececece et ssesnesne s s s sne s nesnesassn e nn s sn e sn e nn e snenn s nnennennenns 191
L0 02T LG 0 L 191
UPAALe XML daLAcoeeeeeeeecririreeir e se s s e sn s e e 192
312 1o I | 4 193

E3 1111 P2 7SS 194

Code ChallENQES......cceeerererererrrere s sa e r s sn e s ae e n e e s n e 195

Practice Exam QUESHONS.........ccccoieirnnncnn e 195

Chapter 7: Manage Object Life CyCle......cccccmmssumrmssammmssansmsssnsesssnsssssnssssssnssssnnsss 197

Fundamentals of Object Life CyCle......c.ccucrrrrrrrcrirsrser s ses e e 197
Creation Of an ODJECT ..o 197
Deletion Of @n ODJECTccceerreer s 197

xi

CONTENTS

Fundamentals of .NET Garbage ColleCtion...........ccccccverriernnmsenenseressssesesse e seseseenas 198
When Garbage CollECHION RUN ...t 198
Garbage Collector and Managed Heapccceceerreenererneeniseseesesesss e sss s sesssssssssnnns 198
GENEIALIONS ... 198
Steps Involved in Garbage COIIBCTIONccceureeererereerirr e 199

Manage Unmanaged RESOUICEcceecerreermrieeriersee s s s ssee s s s e ssse e ssnesnes 199
Implement IDisposable to Release Unmanaged RESOUICEccceveveerererererersersesersesessesesseressessssenes 199
Call Dispose Inside try/finally BIOCKcccevrereerereerererereressessssessesessesessessssessssessssessesssssssssessssesssnenes 200
Call Dispose Inside Using StatemeNt..........cccvceverererrerrerreresreree e sesseresesasessesessssessssessesassessssenes 201
TS0 TO T 10 1 202

MEMOTY LEAKS.......cecererereressesses e s e st s e s e s e s e s e s e s e s e sn s e sn s s s e e snsnnesnssnssnnnnssnsnnesnnnnnns 203
Manage MEMOIY LEAKScceurueeerereeerisise s sa s sa s sa s e s ss s nesns e e 203

SUMMEANY ...ttt a s ae e e n e s e a e e ne e s nnnnnnnnas 204

COUE CRAIIBNYES.....ccuereereereerrereersersersessessessessessessesssssssasssssassassssssssassassassassassssssssasssssnns 204

Practice Exam QUESHIONS..........ccoiiriinnn s 204

Chapter 8: Multithreaded, Async & Parallel Programming.........cccuussssennsnssssnnnas 207

Working With TRIEadSc.ccecrciririrrrsr s 207
Create and Start @ TRrEAd...........couecc s 208
B LT To Lo o OO 210
Foreground & Background TRIEAM............corureeerermreicririree s se s 21
Pass a Parameterize Method t0 @ Thread..........c.coovnnnninnnnnsn s 214
Thread.SIeep(MIllISECONAS)c.coceererreererereese e sn s 215
B (LT To LT RSOOSR 216
THrEAASTALIC ... ————————————————————————— 218
THrEAA POOL.......cciiiiiiiiri i ———— 221

WOrKing With TASKScccecereenirerensessessssssesssssessssesssss s ssssessesessssssssssssssssssssssssssssssssnsssens 223
Create and RUN @ TASK ..o 224
Create and Run @ TaSK<RESUIES ... 228
Wait fOr ONe OF MOTE TASKcccoeverereriririririsiririsirere e 234
Chain Multiple Tasks with CONtiNUALIONS ..o 240
LTS (T B T 243

xii

CONTENTS

Synchronization of Variables in MUltithreadingcoceevevrerersernrers e seseseesessesessesessesesaens 245
0L 1o I 0 249
07 14T L0 251
Making Ul RESPONSIVE..........ccecerererersirsises s se e se s e e e e e e snssnssnssns s nnnnns 253
How to Make Ul Responsive with ASync and AWait...........cccerernrenerrnrnsssessssnssesessssssesessssssssesssssssssnens 254
Prevent Application from Cross TRIEAUdINGcccccveverereriererieresrerssersesessssesserssessesessssessssessesassessssenes 259
Parallel Programming........ccccceeersernnesessssesesssessssessessssesssssssssssssssssssssssssssssssssesssnssnes 260
Concurrent COBCHON ..o s 260
Parallel.For & Parallel.FOreach ... 263
PLINQcoeereereesessssssesesessssesesesssssssesss e s e s ss s e s s ssa e e sasse e e ssssese e s ssasenessssnssssssssssssnsnssssssnsnsnsnssnsnnns 265
1111 11 SRS 266
COUE CRAIIBNYES.....couereereereerrersersessersessessesssssessessssssssssasssssassasssssssssssasssssasssssassassssssssnns 267
Practice Exam QUESHIONS..........cccorerirrnncrnirie s 267
Chapter 9: Exception Handling and Validating Application Input...........ccccceeein. 271
Introduction t0 EXCEPLIONcccicereirce e 271
Handling EXCEPLION........ccccereiesrrcrine e sn s s sna e 272
IPY=CALCN .. ——————————————————————— 272
try-catch (EXCEPHONTYPE BX) ...eouecrerereccirirceeririse et 273
try-catCh (EXCEPHONTYPE)coverreererrrreererssseesesesssse s se s s se s se s sa s sssss e e ssssssssssnsns 275
TrY-CatCR-TINAIY ... ———————————— 276
LU 11711 OO 278
Use Multiple Gatch Blocks to Handle Multiple EXCEPLIONS........ccoeeeerererererrere e 279
Throwing EXCEPLIONScccvcrcirr sttt 280
Re-throwing an EXCEPLIONc.cccceeeieescrirrec e sn s s e sassssnsnnns 282
Throwing an Exception with an Inner EXCEPLION ... see s 283
Creating CuStom EXCEPLIONScccceerverensmrsenesersesesesesse e ssssesss e e sss e ssesnssessssessessnsenns 284
Validating Application INPUL...........ccoorircrcrsr s 285
REGUIAI EXPIESSIONScveiereererereeereerertesersesesserassessesessesessesassesss e ssesessesesassassesassessesessesssssassessssessenenns 285
1111 11 SRRSO 289
COUE CRAIIBNYES.....coerrereereerrersersersersessessessesasssessssssssssaessesassasssssssssssasssssasssssassassasssssens 289
Practice Exam QUESHONS..........cccoirninn s 290

CONTENTS

Chapter 10: File 1/0 Operationsccccivrnmmmssssssnnnmmmmmmssssssssssssssssssssssssssssssnnss 291

WOrKing With DIVccoceviirierirerser st se s sn s s sn s sassas s 291
Working With DIr€CIOIESccvververrirrirrer sttt e 292
Directory and DireCIOrYINTOccceeeeiececrreescs s 292
WOrKIiNg With FileS.......ccveeereiienireresenesesse s ses s e e e ssssnnnens 294
File @nd FileInfo ... 294
Working With STrea@m..........ccocvvrcrcrissssir s 295
FIIBSIrBAM ... 296
1T 0 0TS =T 298
BUFfErEASTIIBAM ... 298
Working with File Reader and WHLer..........c.ccovverenriiennncnesiseses e sessessesessens 299
StringReader and StHNQWIITET ..o s sre e 299
BinaryReader and Bin@ryWIiterccccovverniernnerssess s s sss s sessssssessssessssesssssssssnsssssssesssneens 299
StreamReader and StreamWILErcoouini s ————— 300
Communication over the NEtWOrK...........cevvnnnmn s 300
Working with asynchronous File 1/0.........c.ccvrvrvrvernnrenserser e seens 301
Async and AWaIL iN File 1/0 ...t 301
SUMMEAIY ...ttt e s e s ae e e r e s e a e ne e e snnnnnnnnas 302
C0dE ChalIBNQES......cceeererererrereserrese s ss s sse e sas s s sr s srs s s sn e snesn s s sns e snesnnssnns 303
Practice Exam QUESHIONS..........cccoieirrcncririr e 303
Chapter 11: Serialization and Deserialization............ccccemmmnnninnssssssnnnsneennn. 305
Serialization and Deserialization.............coccevrerennscrennnenss e 305
SEHANZALION.........ceieecee s 305
DESEHANIZALION ... 305
Pictorial RepreSentationccccceeeerernsisscnsse s 305
EXPIANALION ...t anne e 306
Binary Serializationcoccvvvierienrnsrserr s 307
USING BiNArY SEHANIZETceeeeereeereerere s resereeseraeseraesesseses e sas e ssesessesesaesasaesassesaesesasesassasaesassesssnenes 307
XML Serialization...........covrermimnninin s s 308
USING XML SEHALIZEN.......ccrereeerreerreese e e e s s s et b e n e e e e sa s sre e ns 309
Using DataContract SEHalizZer...........cccueererriernscre e 312

xiv

CONTENTS

JSON Serialization.........c.ccocrververrerserrirsersr e n s 313
Using DataContractdSONSEIIAlIZEYcccourueverererrnerenirieee s nnns 313
USiNG JAVASCHIPISEHALIZENceceererreeeririee s s e nas 314

Custom Serializationcccevceresirernsene s e 315
USING ISEHANIZADIEceveereereeereeeree et rere s e rae e saesesaesessesasaesa e e saesesae e saesasaesassesaesesaeesasanaesansesannenes 315

Serialization Performance COMPariSON..........cccceerreesssrssessssssssss s sss s ses s ssssssssssssnens 316

SUMMEAIY ...ttt e s e e saesn s e r e e s e a e e s ne e s snnnnnnnnns 317

COUE CRAIIBNQES.....couereereereerrereersersersessessessessessessesssssssasssssassassssssssassassassasssssssssssssssssnns 317

Practice EXam QUESTIONS.........ccccoverererercrinesesese e ss s 317

Chapter 12: Consume Data.......ccocccemmmmnnnmnmmmsssssnmmmsssssmmssssssnssssssssssssssssssssssnnnns 319

Working with @ Databasecccecvrrirsnsesssses s 319
ADO.NET......oueetuessueesusssssesssssssssssssssssssssssssssssssssssnsssssssssssssssssnssssssssnssssesssnssasssssnsssssssnsssssssnssassssnsssnes 319
Do (0110 LT £ TR 320
CONNBCTION. ... 320
COMMANG ... 323

Conceptual parts 0f ADO. NETcooeeerererireriese e see e sss s ssesssssssssssssssssssnsssssssnnns 323
CONNECIEA LAY ...ttt e e s s s e e sn e e e 323
DiSCONNECIEA LAYEc.veeeeceririeceris et n s s ne e nn s e e 326
ENtity FrAMEWOTKcceeeeeceriscc sttt nas 328

Consume XML and JSON Datac.ccoovverenmnscrenmnsesessesesessessssess s ssessssessssesnsssnsens 335
XIVIL DBEA 1.vvesveessressessesssnesssesssnesssssssessssssssnesssesssnesssssssnssssssssnssssesssnssssssssnssssnsssnssssnsssnssssnsssmssssssssnsssnns 335
BT L PP 337

Working with Web ServiCes........ccuovirrnirnrsssessesssrsss s s e e s snnnes 337
ASIMX WED SEIVICE ...cociiriririririsisisisisisisisisise s 337
WCF WED SEIVICE.......criririiriririririinniniisinis s 343
WCF web service vS. ASMX WED SEIVICEc.cocvrrrnnnnnnsssssssssssss s 343

SUMMEAIY ...ttt a s s ae e e r e s n e e ne e s nnnnnnnnas 344

CO0E CRAIIBNYES.....couereereereerrereersersersessessersessessessessessssasssssasssssssssssassassassassssssssssssssssssnns 344

Practice EXam QUESTIONS.........cccereierenencrinee s sansnnens 344

XV

CONTENTS

Chapter 13: Working with Cryptographycccccunemmmnnssnmnmnsssssnmnmssssnsssssnsns 347
Cryptography......ccc o n e e e 347
ENCIYPLION ... R e R e R e e R e R e s 347
CrYPLANAIYSIScveeerecece e s e s r e e R e Re e e R e R e e R e e Re R Re R e e R e e 348
Pictorial RePreSENtationcccocvererierirere s e sa e s sa e s sae s a e sa e s e e s a e sa e sa e a e sn e sa e nn e 348
TyPEs Of ENCIYPLION.......ccocerererir sttt e s 349
SYMMELTC ENCIYPLION ...t 349
ASYMMELIiC ENCIYPLION ... 351
Implement Key managementcoccooorienirneniinne s ssessesses s ssse s s s sessnessnssnens 353
SYMIMETIIC KBYS... e ruererereererrererererererersesessesessesessesassessssessesessesessessssesassessssessesssessssesssnessensessnsssesasaens 353
ASYMMELIIC KBYS....cuceeeirrreesirssse s r s e s e e e s s e g p e nnnp e nnnrans 353
ENCrypt STrEaM.......ccee e s 354
Working with ProtectedData Class...........ccccvvrverrersensenssssisser s sns e 355
o (0] (- | OSSR 355
0T 0T 0] (-T2 TSRS 356
Manage and Create Digital Certificates...........currrrrrrrrnnsrsrsr s 357
Create and InStall CertifiCatecooerererererererererereses e 357
Working with System.Security Namespacecccvvvverrerrerrersessessesses s sessessessessenans 357
Code ACCESS SECUILY (CAS)....c.errererrererrerererersersesersesesssssssessssessssessesessessssessssessssessesesssssssssassessssesseneres 358
DECIArALIVE.......cceeeeerccere iR R e R R 358
11 0] 0] 2 1TSS 358
HASRING ..o n e 358
T 1L F2 T 1] o P 360
Choosing an appropriate Algorithm...........cccceeeerenenere e seeeens 360
Working with SecureString Class.......cccuvvvrrrrernensensessessesser s ses s ses e e sesssssassssses 361
SUMMAIY ...ttt ae s e s e e e a e e s a e e ae e s e nnn e naens 362
CO0E CRallBNQES......cueereeeerrerrerrerreere e ssesse e ssessessessessesaessesssssessessessssresnesnesnesnssnasnessansans 363
Practice Exam QUESTIONS.........cccvvrverierririrsires s se s se s sn s snssnssnssnnnns 363

xvi

CONTENTS

Chapter 14: Assembly and Reflection........ucccememmmnnnmmmmsssssssnnnmsmsmmsssssssnnsssnns 365
Introduction to ASSEMDBIIES.........cccviicriir e ————— 365
When Code iS COMPIIE........ccererrererererereresersssersesessesessessssessssessesesssssssessssessssesssssssessssessssessssssssssnnes 365
TYPES OF ASSEMDIY ... ae s e e a e R e e Re e s aenr e e e a e e e nenrnnas 365
USES OF ASSEMDIY ...t p s s a s r e e n e e ae e nn e r e e 366
Creating and Using Custom ASSEMDIY.........cccoceeeeiieneie e ses e e snenns 366
Dynamic LinK LiDrary (:DLL)......ccocceeererererisiers e sss e ssssessesessessssessssessssesssssssssssssssssessssenns 366
EXECULEADIE (LEXE).....ccoeeeieecerececee et nn s 370
WINMD ASSEMDIY......coeeererrriresessessesessesesssssesessesssssssssssssssessssssssssssssssssssssssssssssssssasens 371
Create WInMD ASSEMDIY.......cccouieeererrreieseresrssesesessssssesesesss e e s s sesss s e s ssssssssssssssssssssssssssssssssassens 371
Global AssemDbly CACNE (GAC)covereereereereersersersessrssesasssssasssssssssssssssssassssssssssssssasssssanas 372
Install an ASSEMDIY iN GACcoeeereererererererereererseseraeserseres e sassessesessesessssassesassessssesssssssssassessssesseneres 372
DTS =T 4] 00 O 373
REflECtion iN CH ... 375
Working With REfIECHONccoueeeecee e e 375
ALFDULES IN CH......eee e 385
Create a Custom ARFDULE ... 385
Use ILdasm.exe to View Assembly Content...........ccooevevrnrrnnsnnss s ses e 392
SUMMEAIY ...ttt e s s ae e e e r e e s e n e e R e e ne e nnens 393
C00E CRalIENQES.....ccueereeeereerrerrerrerre s e e ssessesse e ssesressssresressesresassresrssaesnesnssnesnesnnnnans 393
Practice Exam QUESHIONS.........c.cococerrnnrerere s 393
Chapter 15: Debugging and Diagnosticsccciumsssmmmmmssssnnnmsssssnsnssssssnssssssssnnnss 395
DL 010 o T o S 395
Choose appropriate BUild TYPEccceeerererererrereerereesereesersereseressessesessesessesessesassessesesssssssssessesssserssnenes 397
Creating and Managing Compiler DIr@CLIVESccceeereererereriererrereesereesersereseresersesessesessesesaesassessssenes 398
Understand PDBS and SYMDBOIScceorererrererereneresereresersssessesessesesssssssesssessssesssssssssessessssesseneres 401

xvii

CONTENTS

D 10 L0 L] (PSSR 402
Instrumenting an ApPlICALION..........cccevieeeeerereescr s 402
LOGGING ANA TrACINGcovrveeecrerrereeresesseeesesssssesesssss e e s s e e s s s e s sse s e e ssssssssssssssssssssssesssssssssnsasnns 403
Profiling the ApPlICALION........ccovieeeeee et 411

E3 1111 P2 7 419

CO0E ChallENQES.....cceereeeerrerrerrerrerressessessessessessessessessessessssssssesssssessssresnssnessesnssnssnassnnsans 420

Practice EXam QUESTIONS........c.ccoverrnnmiennsesesssesssse s sss s s s sssssssesnssssnes 420

Chapter 16: Practice Exam Questionscccceemmmrrssssssssssssnnssnssssssssssssnnssssssssnns 423

Objective 1: Manage Program FIOW..........cccceiiernnnennsmnesnssesssss s ssess s sessessssens 423

Objective 2: Create and USE TYPEScccevereererreereereersesssssesssssssssssssssssssssssssasssssssssssssssnns 431

Objective 3: Debug Application and Implement Security..........cccceeeeereresesssesseesennnnns 443

Objective 4: Implement Data ACCESSc.ccverrrrerresersesessessessssessssssessssessssssessssssssssssens 451

1T - 467

xviii

About the Authors

Ali Asad is one of the top C# programmers of Pakistan. He is a Microsoft
Specialist (MS) in C# since 2015. In Pakistan, he is well known for his
popular Microsoft C# Certification training, which helped so many
students to pass their Microsoft Certification Exams.

Ali is an active community member; he speaks about
Game Development and C# Programming at different conferences and
workshops.

You can reach out to Ali Asad through:

e twitter.com/imaliasad

facebook.com/imaliasad

linkedin.com/in/imaliasad

e imaliasad@outlook.com

Hamza Ali is a Microsoft Specialist (MS in C#) since 2015 and an
independent trainer teaching .NET technologies and the Cloud platform
in general, and Microsoft C# certification training and ASP.NET MVC, in
particular. Hamza is also exercising his expertise in JaSol Technologies
(emerging Software House in Market own by him) as CTO.

He speaks at different tech talks and gives sessions on different tools
and technologies, and frameworks including ASP.NET Core, Angularjs,
Reactjs, Visual Studio Team Services, WCF Services, and Web APIs, using
his expertise and experience.

You can reach out to Hamza Ali through:

e linkedin.com/in/hamzaali2
e facebook.com/hamZaali.003
e hamzaaliarif@hotmail.com

e twitter.com/arreezl1l

Xix

About the Technical Reviewer

Syed Lakhtey Hussnain is a Software Engineer in a wide range of
applications with solid experience in developing web applications
(including ERPs,CRMs) with ASP.NET MVC. Lakhtey is working as a
Technology Strategist with Senior Development team from Barracuda
Inc. to reconstruct entire web application that serves the business
purposes. Lakhtey has also been working as a trainer in a Startup called
“7Colors’ where he gave trainings to his community members on .NET
certifications. He is also a Microsoft Certified Solution Developer in Web
Applications and AppBuilder.

Lakhtey has his deep interest in Music and Art and enjoys it a lot.
Lakhtey lives in Kharian, Pakistan with his Parents.

Lakhtey can be reached at:

e lakhtey hussnain@hotmail.com

e https://twitter.com/lakhtey22

e https://www.facebook.com/hassan.lakhtey
e https://www.linkedin.com/in/lakhtey/

XXi

mailto:lakhtey_hussnain@hotmail.com
https://twitter.com/lakhtey22
https://www.facebook.com/hassan.lakhtey
https://www.linkedin.com/in/lakhtey/

Acknowledgments

Ali Asad: It is my honor and privilege to have worked with Apress. I'd like to thank each person who
contributed a lot to the book:

To Celestin Suresh John for providing me the opportunity to write this book.

To Sanchita Mandal for your tremendous support and coordination that helped me
a lot in the writing process.

To my co-author Hamza Ali for your great partnership. Without your support, this
book wouldn’t get the quality that it has now.

To Syed Lakhtey Hussnain for your technical reviewing skills. It helped me to
correct the mistakes I made.

To David V Cobin for taking the time to read this book and providing your valuable
foreword.

To the entire team at Apress, who made this book possible.

There are people in life who are special, who inspire you, support you and make you the person you are
today. I have been so blessed for having such people in my life, because without them I wouldn’t be able to
write this book.

To Ali Raza (AlizDesk) for guiding me to take the Microsoft Certification Exam.

To Mubashar Raffique for supporting me in the academy, where we trained students
and professionals for their Microsoft Certification Exams.

To Usman Ur Rehman for all your valuable advice and support that helped me a lot
during my time working at the Microsoft Innovation Center, Lahore.

To Faqeeha Riaz for doing my semester assignments and helping me to prepare for
final exams because, without your support, I wouldn’t be able to give my complete
focus to this book.

To my parents (Mama[Samina], Papa[Asad]) for giving me the freedom to do good
work in life.

Last but not least, to Sundus Naveed for all your patience, support, and love.

xxiii

ACKNOWLEDGMENTS

Hamza Ali: I am honored to work with Apress, one of the quality-oriented book publishers. I'd like to
acknowledge the contributions done by:

¢ Celestin Suresh John: for providing the opportunity to write this book.

e Sanchita Mandal: for your committed and continuous support to maintain and
complete the book on time.

e Ali Asad: my co-author, for your big contribution along with your support to write,
complete, and maintain the quality of the book and, obviously, the opportunity for
the book.

¢ Syed Lakhtey Hussnain: for technical review and pointing out some deep mistakes,
which improved the quality.

e David V Cobin: for writing the foreword for this book.

e Zunaira Shafqat Ali: for your support and understanding throughout the process of
book writing.

I'd also like to thank:
¢ my family: for encouragement and support.
e Ali Imran: for support and guidance.

e Mubashar Rafique: for availability and useful thoughts.

XXiv

Introduction

This book covers basic to advanced-level knowledge required to pass the Exam 70-483. It covers the usage
and techniques used for professional development.

This book covers all the objectives listed in the official syllabus for Exam 70-483.

This book is suitable for students or readers who have a basic knowledge of C#, to lead them to an
advanced level fit for experienced developers.

Target Audience

Students or readers with a basic understanding of C# and the learner beyond this stage are the target
audience. Microsoft recommends one year of experience in C# before appearing for Exam 70-483, but this
book (with its synced and basic to advanced explanation structure) leads basic, intermediate, or advanced-
level students or developers to that level where they can easily appear for the Exam 70-483 with satisfactory
preparation that also helps for concepts’ clarity.

This book prepares readers for Exam 70-483 and, by passing this exam, “Microsoft Certified
Professional” and “Microsoft Specialist: Programming in C#” certificates are awarded by Microsoft.

Content Covered

This book covers the content listed in the official syllabus for Exam 70-483 along with the building block
topics related to official contents, so that synchronicity can be maintained and readers can understand the
content step-by-step.

This book uses C# 5.0 and .NET Framework 4.5 in its content and examples. Exam-type questions
for each chapter are also covered by this book to give readers better understandability, as well as Exam
Challenges to improve the coding skills of readers.

Book Requirements
To read and implement code examples, you will need:
e Asystem (PC) with Windows 10

e Microsoft Visual Studio 2015 Community (this edition is freely available) Or above.
You can download this version from the following link:

https://www.visualstudio.com/downloads/

XXV

https://www.visualstudio.com/downloads/

INTRODUCTION

Structure of Book

The book is structured so that the knowledge base builds gradually. The chapter’s structure is as follows:
e Each chapter contains the objective to cover.
e Real world examples to clear the concepts of readers.
e Mapping of real world examples into code.
¢ Notes and tips from authors for best practices.
e Useful resources links added where required.

e Atthe end, exam structured MCQs are given to test the capability of the reader based
on his/her understanding of the chapter.

Each chapter is mapped to 4 main objectives of Exam 70-483 with respect to its contents. The
objectives are:

1. Manage Program Flow 25-30%
Create & Use Types 25-30%

Debug Application & Implement Security 25-30%

Eal N

Implement Data Access 25-30%

The objectives (with their sub-objectives) explained in this book with respect to chapters are:

Manage Program Flow 25-30%

This objective explains how you can use simple C# programs that execute all its logic from top to bottom,
and also use complex C# programs that do not have a fixed program flow. In this objective, we’ll cover
following sub-objectives:

1. Implement Multithreading and Asynchronous Processing. (Chapter 8)
Manage Multithreading. (Chapter 8)
Implement Program Flow. (Chapter 1)

Create and Implement Events and Callbacks. (Chapter 5)

o~ N

Implement Exception Handling. (Chapter 9)

Create & Use Types 25-30%

This objective explains the default type system in .NET and explains how you can use it in a simple C#
program. This objective also explains how you can create your custom types by using struct, enums, and
classes, and use them effectively to create complex C# programs by using object-oriented principles. In this
objective, we'll cover the following sub-objectives:

1. Create Types. (Chapter 2)
2. Consume Types. (Chapter 2)

3. Enforce Encapsulation. (Chapter 3)

XXVi

http://dx.doi.org/10.1007/978-1-4842-2860-9_8
http://dx.doi.org/10.1007/978-1-4842-2860-9_8
http://dx.doi.org/10.1007/978-1-4842-2860-9_1
http://dx.doi.org/10.1007/978-1-4842-2860-9_5
http://dx.doi.org/10.1007/978-1-4842-2860-9_9
http://dx.doi.org/10.1007/978-1-4842-2860-9_2
http://dx.doi.org/10.1007/978-1-4842-2860-9_2
http://dx.doi.org/10.1007/978-1-4842-2860-9_3

INTRODUCTION

Create & Implement Class Hierarchy. (Chapter 3)
Find, Execute, and Create Types at Runtime. (Chapter 14)

Manage Object Lifecycle. (Chapter 6)

N o a &

Manipulate Strings. (Chapter 4)

Debug Application & Implement Security 25-30%

This objective explains how you can debug an application by validating user inputs, managing assemblies,
etc. Also, you'll learn how to secure your application by implementing different encryption techniques
(i.e., symmetric and asymmetric) and much more. In this objective, we'll cover the following sub-objectives:

1. Validate Application Input. (Chapter 9)

Perform Symmetric & Asymmetric Encryption. (Chapter 13)
Manage Assemblies. (Chapter 14)

Debug an Application. (Chapter 15)

LA

Implement Diagnostics in an Application. (Chapter 15)

Implement Data Access 25-30%

This objective explains how you can use .NET libraries to manipulate data in a file system. It explains how
you can use LINQ to query data, use ADO.NET to access a database, and much more. In this objective, we’ll
cover the following sub-objectives:

1. Perform I/O Operations. (Chapter 10)

2. Consume Data. (Chapter 12)

3. Query and Manipulate Data and Objects by Using LINQ. (Chapter 6)
4. Serialize and Deserialize Data. (Chapter 11)

5. Store Data in and Retrieve Data from Collections. (Chapter 4)

Keep in Touch

We have created a small and effective community on a Facebook group for readers of this book. We highly
encourage you to join our Facebook group so, if you face any problem, feel free to post questions or start
a discussion related to Microsoft Certification Exam 70-483 at: https://www.facebook.com/groups/
Exam70483/.

xxvii

http://dx.doi.org/10.1007/978-1-4842-2860-9_3
http://dx.doi.org/10.1007/978-1-4842-2860-9_14
http://dx.doi.org/10.1007/978-1-4842-2860-9_6
http://dx.doi.org/10.1007/978-1-4842-2860-9_4
http://dx.doi.org/10.1007/978-1-4842-2860-9_9
http://dx.doi.org/10.1007/978-1-4842-2860-9_13
http://dx.doi.org/10.1007/978-1-4842-2860-9_14
http://dx.doi.org/10.1007/978-1-4842-2860-9_15
http://dx.doi.org/10.1007/978-1-4842-2860-9_15
http://dx.doi.org/10.1007/978-1-4842-2860-9_10
http://dx.doi.org/10.1007/978-1-4842-2860-9_12
http://dx.doi.org/10.1007/978-1-4842-2860-9_6
http://dx.doi.org/10.1007/978-1-4842-2860-9_11
http://dx.doi.org/10.1007/978-1-4842-2860-9_4
https://www.facebook.com/groups/Exam70483/
https://www.facebook.com/groups/Exam70483/

Foreword

As a professional developer for multiple decades, I have seen and been involved in many different
certification programs. Microsoft has invested heavily in a set of exams and certifications that are indicative
of a candidate’s ability to apply the relevant knowledge to real world situations.

When I was first approached about writing a foreword for this book on the 70-483 Exam, I was cautious.
Over the years, I have seen far too many publications that do not provide any real understanding of the
underlying material. However, upon receipt of the draft for this book, those concerns were eliminated.

The chapters contain topics ranging from the very basic to advanced C# language capabilities, using
a combination of narrative text and code samples. Even if you are a seasoned C# developer, starting
preparation for the exam from the beginning is highly recommended.

The Exam policies and FAQ page on the Microsoft site specifically states: “The best way to prepare for
an exam is to practice the skills.” I encourage all readers of this book to also spend hands-on time with the
material; fire up Visual Studio, enter the sample code, write some little programs of your own related to
the capability, and use the debugger to step through the code.

With the material in this book, the diligent reader should be well on their way to the level of understanding
needed to do well on the 70-483 Exam. Even if your immediate focus is not on certification, there are always
learning, review, and reference needs that can be addressed by keeping a copy of this book handy.

David V. Corbin
President/Chief Architect
Dynamic Concepts Development Corp.

XXix

CHAPTER 1

Fundamentals of C #

To prepare for Microsoft Certification Exam 70-483, it is essential to learn the fundamentals of C#
programming. This chapter teaches you how to:

1. Write your first program in C#.

Work with variables, primitive data types & operators.
Use implicit & explicit type casting.

Use var keyword.

Work with arrays.

Define decision structure.

Define decision operators.

Work with loops.

© Lo N o g &~ w0 N

Use jump statements.
10. Use & define methods.

To get more out of this chapter, grab a pencil and paper, note down each point, and writing code
snippets in Microsoft Visual Studio 2012 or above. At the end of this chapter, you can practice all concepts
by: reviewing the summary, completing code challenges, and solving multiple choice questions. Good luck!

Program Structure & Language Fundamentals

This section helps us to get started with program structure by learning basic building blocks of C#
programming. These building blocks include:

e Write first program in C#

e Work with variables, primitive data types & operators
e Understand expressions in C#

e Understand type casting in C#

e Use var keyword

e Arrayin C#

© Ali Asad and Hamza Ali 2017
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_1

CHAPTER 1 © FUNDAMENTALS OF C #

First Program in C#

Writing your first C# program is as simple as writing a program in C++/Java or in any high-level
programming language. We prefer to write code in the console application to practice all topics for
Exam 70-483. It is necessary that we know how to create an empty C# console project in Visual Studio to
write the program.

To create an empty C# console project in Visual Studio 2012 or above, follow these steps, beginning with
(Figure 1-1):

D Start Page - Microsoft Visual Studio
File = Edit View Debug Team Tools Test Analyze Window Help

New {3 Project... Ctrl+Shift+N
Open * | %@ WebSite... Shift+Alt+N
Close ¥z Team Project...

&= Repository...
Salected lterns Ctrl+S "0 File... Ctrl+N
Project From Existing Code...

code repo and backlog for your project
7 it is to get started with cloud services
o extend and customize the IDE

Ctrl+Shift+S Createap
See howe
Discover w

A ings...

ccount Settings. News

Recent Files »

Recent Projects and Solutions » | Updating the news channel..

B Edt Alt+F4

[

Figure 1-1. Open a new project in Microsoft Visual Studio

Open Visual Studio, Click on File » New Project.
A window (Figure 1-2) will pop up to create a .NET project. Follow the below steps to create an empty
C# console project in Visual Studio.

CHAPTER 1 * FUNDAMENTALS OF C #

New Project ? X
b Recent NET Framework 452 + Sortby: Default - B= Search Installed Templates (Ctrl+E) P~
4 |nstalled cs - . +
r'_] WPF Application Visual C# Type: Visual &
4 Templates ‘.,f. A project for creating 2 command-line
4 Visual C= h Console Application Visual C# application
¢ Winde
(<]
Web ;_] ASP.NET Web Application Visual C#
Android
cs
Cloud F_I Shared Project Visual C#
Extensibility &
; cn
i0s Eqﬁ! Class Library (Portable for i0S, Andrcid and Windows) Visual C=
Reporting L
Sitverlight E Class Library (Package) Visual C2
Test -
WCF Tl _—)
Console Application (Package) Visual C&
Workfow En B *
¢ Visual Basic nﬁc'
Class Libra Visual C#
Visual F# ol g
b Visual Co= cu
(::J: _____ - giﬂ Class Library (Portable) Visual C# >
b Online Click here to go online and find templates.
Name: o |FirstProgram| |
Location: C\Users\aliso\Documents\Visual Studio 2015\Projects), >
Solution name: FirstProgram [w] Create directory for solution
[] Add to source control

Figure 1-2. Choose project template

1. Select template “Visual C#” from left pane.

2. Select “Console Application” as a project type.
3. Write a unique name for your project.

4. Select “OK” to create the project.

Program.cs class will appear, which contains some default code. These codes are divided into different
segments (using, namespace, class, main).

CHAPTER 1 © FUNDAMENTALS OF C #

Program.cs & X

[FirstProject =] %%, Firstp

2

9 - class Program
1@ {

11 static void Main(string[] args)

12 {
. ‘
14 }

—namespace FirstProject
{

132 %

[}

Figure 1-3. Program.cs

1. using: statement helps to import namespace in the program. These namespaces
have types that we can use to develop applications.

2. namespace FirstProject: C# strictly follows object-oriented design. Therefore,
when we created an empty console project, it creates a namespace with a project
name. Inside namespace we write types for our project.

3. class Program: C# creates a default class inside namespace called “Program”.
Inside classes we write methods, fields, properties, and events that we can reuse
in the project.

4. Main: C# program must contain a main method. It is where execution of the
program begins.

Inside main method, write the following line of code to print a nice message on the output screen as
shown in Listing 1-1.
Listing 1-1. First C# Program

static void Main (string [] args)

{
}

Console.WriteLine("Welcome devs!");

To run the above code press “f5” or click on the start button from the toolbar in Visual Studio. It will
print “Welcome devs!” on the output screen.

CHAPTER 1 * FUNDAMENTALS OF C #

Note Console.WriteLine is a method that takes the message and prints it on the output screen.

Congratulations, you've successfully written your first application in Visual Studio using C#. Now you are
ready to begin your journey to become a Microsoft Certified Professional & Specialist: Programming in C#.

Variables & Data Types

Data is everywhere. Our job as a developer is to manipulate data and produce required results. Data have
numerous types (for example, text, audio, and video, etc.). Each type of data can hold a different size in
memory. The same concept applies while writing an application in C#. We have variables to store data and
data types to describe what type/size of data can be stored in a variable.

Syntax
Date_Type Variable Name = Value;

Code Snippet

Listing 1-2. Initialize an integer variable “age”

int age = 10;

Data Types in C#

There are some Data Types in C# which are common, used frequently, and have different sizes in memory.
In Table 1-1 we have listed some of them.

Table 1-1. Common data types in C#

Data Type Example Default Value Memory Size Classification
int 456 0 4 bytes Value Type
float 10.05f 0.o0f 4 bytes Value Type
Double 19.5D 0.0D 8 bytes Value Type
Char A "\o' 2 bytes Value Type
byte 5 0 8 bit Value Type
string "Dev" Null (2 bytes) * (length of string) Reference Type
bool true False 1 byte Value Type

CHAPTER 1 © FUNDAMENTALS OF C #

Variables in C#

Variables are placeholders, to store data in memory for a temporary period of time. In programming, a
variable is used frequently to retrieve and edit data in memory to produce required results. When defining a
variable, there are some rules which we must follow.

e Name of a variable must start with an alphabet or underscore (_). Variables can also
be alphanumeric.

e Name must be unique and it cannot be a keyword (e.g., “using”).

e Do notinsert space while defining a name, use camel case (studentName) or pascal
case (StudentName).

Operator in C#

Operators are special symbols, used with variables (operands), to manipulate data with the aim of
producing required results. Operators lie in different categories. Some of them are listed below:

e Arithmetic Operator
e Relational Operator

e Boolean Logical Operator

Arithmetic Operator

We use arithmetic operators on numeric values to perform mathematical operations. For example, in the
following (Table 1-2), each arithmetic operator is used to perform a different mathematical operation.

Table 1-2. Arithmetic Operators in C#

Operator Description Example

+ Add Operator used to add two numeric values int add = 10 + 5; //add = 15
- Subtract Operator used to subtract two numeric values int min = 10 - 5; //min = 5
* Multiply Operator used to multiply two numeric values int mul = 10 * 5; //mul = 50
/ Division Operator used to divide two numeric values int div = 10 / 5; //div = 2
% Modulus Operator used to return remainder of two int mod = 10 % 5; //mod = 0

numeric values

Relational Operator

Relational operator is used to compare two values (operands) and return Boolean as a result.

CHAPTER 1 * FUNDAMENTALS OF C #

Table 1-3. Relational Operators in C#

Operator Description Example

> Greater than operator returns “True’, if first value is bool check = 4 > 3; //True
greater than the second value. Otherwise it willreturn ~ bool check = 3 > 4; // False
“False”.

< Less than operator returns “True’, if first value is less bool check = 2 < 4; //True
than the second value. Otherwise it will return “False”. bool check = 4 < 2; //False

== Equal to operator returns “True] if first value matches bool check = 2 == 2; //True
with second value. Otherwise it will return “False”. bool check = 2 == 3; //False

I= Not equal to operator returns “True’, if first value does bool check = 2 != 3; //True
not match with second value. It returns “False” when Bool check = 2 = 2; //False
both values are equal.

>= Greater than Equals to operator returns “True’, if first bool check = 2 >= 1; //True
value is greater or equal to second value. Otherwiseit ~ bool check = 2 >= 2; //True
will return “False”. bool check = 1 »= 2; //False

<= Less than Equals to operator returns “True’, if first bool check = 2 <= 3; //True
value is less than or equal to second value. Otherwise it bool check = 2 <= 2; //True
will return “False”. bool check = 2 <= 1; //False

Boolean Logical Operators

Logical operators are used between two bool values. Some logical operators are described in the table below.

Table 1-4. Boolean Logical Operators in C#

Operator Description Example

&& And operator, returns “True” if both Bool check = True && True; //True
Boolean values are true. Otherwise it will Bool check = True && False; //False
return “False”.

[OR operator, returns “True” ifany of two ~ Bool check = True || False; //True

values have “True” value. If all values are Bool check = False || False; //False
“False” then it returns “False”.

| (false); //Txue
I (true); //False

| Not operator, if value is “False” it returns Bool check
“True” and if value is “True” it returns “False”. Bool check

Expression in C#

Expression helps us to evaluate the result from simple or complicated statements. It’s actually a series of one or
more operands, literal values and method invocations with zero or more operators that helps to evaluate a result.

Code Snippet
Listing 1-3. Write a simple expression in C#
int i = 4;

int j = (i *4) +3;
//Output j = 19

CHAPTER 1 © FUNDAMENTALS OF C #

Type Casting

C# is strongly typed language, which means the type of variable must match with its value in both compile

and runtime. In most cases, we need to convert the type of a data to store it in some other type. For example,

we are getting string data (“10”) and we want to convert it into int32 to perform an arithmetic operation.
There are two ways C# helps you to convert the type of an object or variable, by using:

e Implicit Conversion

e Explicit Conversion

Implicit Conversion

Implicit conversion happens automatically by the compiler itself. No special casting syntax is required and
no data is lost during implicit conversion.

Example

Listing 1-4. Implicit conversion of small to larger integral data
int i = 10;

double d = i;

Listing 1-5. Implicit conversion of derived to base type

object o = new Program();

Explicit Conversion

Special casting/syntax is required when data cannot convert into other types automatically. Data might be
lost in explicit conversion.

Example

Listing 1-6. Explicit conversion of larger data to smaller data type

double d = 3.1417;
int i = (int)d;
// use (type) to convert a type explicitly

Listing 1-7. Explicit conversion of string in primitive data type with “Parse” method

string s = "22";
int age = int.Parse(s);

Note Each permitive type has a Parse method. It helps to convert string data into that associated
permitive type.

CHAPTER 1 * FUNDAMENTALS OF C #

var keyword

Var is an implicit type, used to store any value of an expression. The type of var variable depends on the
value that is assigned on compile time. If the value of an expression, object, or variable is string, then the
type of var variable is string. If the value is int32, the type of var variable will become int32.

var keyword is highly recommended when:

e you prefer good variable names over type;

e The type name is long;

e the expression is complex and you don’t know the type of value it returns.
Syntax
var variable name = data;

Code Snippet

Listing 1-8. Assign any value in var variables

var age = 22; //type of age is int32
var name = "Ali Asad"; //type of name is string
var math = 10 / int.Parse("10"); //type of math is int32

Note Always initialize the var variable with a value. Otherwise the compiler will generate an error.

Array in C#

Array is a collection or series of elements of the same type. Each element stores data which can be accessed
by calling its index number with an array name. An array can have three types:

e Single Dimension Array
e Multi Dimension Array

e Jagged Array

Single Dimension Array

In single dimension, an array stores elements in linear fashion. In most times of development, we use a
single dimension array.

Syntax

type[] nameOfArray;
e type specifies what kind of data array can store
e [] specifiesit’s an array

¢ nameOfArray specifies name of the array

CHAPTER 1 © FUNDAMENTALS OF C #

Code Snippet

Listing 1-9. Declare an array of string

string[] friends;
Initialize an Array

type[] nameOfArray = new type[size];

e new type[size], helps to initialize series of elements of an array in memory. Size tells
total length of an array.

Code Snippet

Listing 1-10. Declare a string array of size 4

string[] friends = new string[4];
Initialize an Array with Values (a)

type[] nameOfArray
nameOfArray[index]

new type[size];
value;

¢ nameOfArray[index] = value; tells to store value in specific index of an array.
¢ Index of an array cannot go out of the bounds.

Code Snippet

Listing 1-11. Declare and initialize string array of size 4 with values

string[] friends = new string[4];
friends[0] = "Ali";
friends[1] = "Mubashar";

Initialize an Array with Values (b)

type[] nameofArray = {values};

¢ type[] nameofArray = {values}; tells to store values directly without specifying
length of an array. Length of an array depends upon number of values written inside
{} curly braces.

Code Snippet

Listing 1-12. Declare and initialize a string array with values

string[] friends = { "Ali", "Mubashar" };
Initialize an Array with Values (c)

type[] nameOfArray = new int[size]{values};

10

CHAPTER 1 © FUNDAMENTALS OF C #

e type[] nameofArray = new int[size]{values}; tells to store values of 4 size.

Code Snippet

Listing 1-13. Declare and initialize string array of size 4 with values

string[] friends = new string[4] {"Ali", "Mubashar", "Lakhtey", "Hamza"};
Initialize an Array with Values (d)
type[] nameOfArray = new int[]{values};

e type[] nameofArray = new int[]{values}; tells to initialize an array with no fixed
size. Its size depends on number of values written inside {} curly brace.

Code Snippet

Listing 1-14. Declare and initialize an array with values

string[] friends = new string[] {"Ali", "Mubashar", "Lakhtey", "Hamza"};

Multi Dimension Array in G#

2D array is the most common kind of multi dimension array that we use in C#. In the real world, 2D array is
used to store more complex data in a system (for example: digital image and board game). 2D array can be
thought of as a table, which has rows and columns.

Syntax

type[,] my2dArray = new int[rowSize, colSize];
e typel,] tells array is 2D.

¢ int[rowSize, colSize] tells size of row and size of column.
Code Snippet

Listing 1-15. Declare 2D array of int, having 2 rows and 5 columns

int[,] numbers = new int[2,5];

Above code declares “numbers” array with 2 rows and 5 columns.

Initialize 2D Array with Values (a)
type[,] my2dArray = new int[rowSize,colSize]
{values},

{values}

};

11

CHAPTER 1 © FUNDAMENTALS OF C #

Code Snippet

Listing 1-16. Initialize 2D array with values in sub arrays

int[,] numbers = new int[2, 5]
{
{2141618110}1
{1,3,5,7,9}
};

Above code snippet tells that “numbers” is a 2D array which has row size of 2 and column size of 5,
which means it stores two single-dimension arrays of 5 size.

Access 2D Array

We use loops to access values of a 2D array. Loops are discussed with much detail later in this chapter.
Following is a code snippet which explains how to access values of a 2D array.

Code Snippet

Listing 1-17. Display 2D array data

int[,] numbers = new int[2, 5]

{
{214)6J8)10})
{1)3’5)7J9}
};
for (int row = 0; row < numbers.GetLength(0); row++)
{
for (int col = 0; col < numbers.GetLength(1); col++)
{
Console.Write(numbers[row, col]);
}
Console.WritelLine();
}
//0utput
246810
13579

Note GetLength(int32) returns total number of elements in a specific dimension of an array.

Jagged Array in C#

It's an array of an array, which means it’s a kind of array whose elements are also an array. Each element of a
jagged array may have a different size.

Syntax

type[][] jaggedArray = new type[rowSize][];

12

CHAPTER 1 © FUNDAMENTALS OF C #

o type[l[] tellsit’s a jagged array.

o type[rowsSize][] tells size of row is fixed but size of column is not fixed, because each
element has a different size of array.

Code Snippet

int[][] jagged = new int[4][];
Declare a Jagged Array

Each index of a jagged array is initialized with a new size of array.

Code Snippet

Listing 1-18. Declare a jagged array having 4 rows

int[][] jagged = new int[4][];

Listing 1-19. Declare each row with a new size of array

jagged[0] = new int[2];
jagged[1] = new int[3];
jagged[2] = new int[4];
jagged[3] = new int[5];

o int[4][] tells jagged array has 4 rows but number of columns is not specified.
e Jagged[0] = new int[2]; tells row 0 has 2 columns.

e Jagged[3] = new int[5]; tells row 3 has 5 columns.

Initialize Jagged Array with Values (a)

Listing 1-20. Initialize value on the jagged array index

jagged[o][0] = 4;
jagged[o][1] = 5;

e jagged[0][0] = 4; store value in jagged array of row 0 and column 0.

e jagged[0][1] = 5; store value in jagged array of row 0 and column 1.

Initialize Jagged Array with Value (b)

Listing 1-21. Initialize jagged array of int with values

new int[] { 4, 5 };
new int[] { 6, 7, 8 };

jagged[o]
Jjagged[1]

e jagged[0] = new int[] {4,5}; initialize an array on row 0 with values {4,5}.

e jagged[1] = new int[]{6,7,8}; initialize an array on row 1 with values {6,7,8}.

13

CHAPTER 1 © FUNDAMENTALS OF C #

Initialize Jagged Array with Values (c)

Listing 1-22. Initialize jagged array of int with values inside sub arrays
int[][] Jjagged =
{

new int[]{4,5},

new int[]{6,7,8},

new int[]{9,10,11},
new int[]{12,13,14,15}

};

e Initialize a jagged array with multiple arrays. The size of the jagged array’s rows
depends upon the number of arrays. In this case, the number of rows is 4.

Access Jagged Array

The values in a jagged array are accessed by specifying the index of both rows and columns.

Code Snippet

Listing 1-23. Display value of jagged array index

Console.WritelLine(jagged[0][0]);
Console.WriteLine(jagged[0][1]);

Loop Over Jagged Array

Listing 1-24. Use for loop to display each value in a jagged array index

//Initialize Jagged Array with Values
int[][] jagged =
{

new int[]{4,5},

new int[]{6,7,8},

new int[]{9,10,11},
new int[]{12,13,14,15}

};

//Loop over each index of jagged array
for (int i = 0; i < jagged.Length; i++)

{
for (int j = 0; j < jagged[i].Length; j++)
Console.Write(jagged[1i][j]);
}
} Console.WriteLine();

¢ jagged.Length: Get total number of rows in a jagged array.

e jagged[int].Length: Get total number of columns of a specific row.

14

CHAPTER 1 © FUNDAMENTALS OF C #

Implement Program Flow

Normally all statements of a program execute from top to bottom. But in a real application, we control the
flow of execution by introducing:

e Decision Structure
e Decision Operators
e Loops

e Jump Statements

Control flow helps our program to execute or skip a code block, helps us to repeat a code until a
condition is satisfied, and helps our control to jump anywhere in the code.

Decision Structure

Decision structures lets a program run only in certain conditions. Normally our program runs in a simple
flow which executes all code from top to bottom without skipping any code. But in the real world, our
application helps us decide what code to execute in certain conditions. For example, you're making a
program that checks a person’s age and decides whether or not a person has reached his retirement age.
In such a case, we introduce decision structures to let the application decide whether a person has reached
his retirement age or not.

C# has some decision structures that we can use listed below.

o If{}
o if-elsef}
o if-elseif{}

e switch {}

If {} Structure in C#

If statement helps us to control the flow of a program. It executes a program only when a certain condition
returns true.

Syntax
if(condition)
{
//T0D0: Execute Program When Condition Returns True
}

e If(condition) returns true it will execute statements written inside {} curly brace.
If condition returns false it will skip code written inside {} curly brace.

Example

Let’s write a code that prints a message “Even Number” only when a number is even.

15

CHAPTER 1 © FUNDAMENTALS OF C #

Listing 1-25. Write C# code to check if number is even

int number = 16;

if(number % 2 == 0)
{
Console.WritelLine("Even Number");
}
//0utput

Even Number

If Else {} Structure in C#

In real application, we find ourselves in a right or wrong situation. For example, if we enter a right username
the system will log in. But if we enter an invalid username the system will pop an error. In such situations, we
write code inside if-else statements.

Code written inside if{} block will execute when conditions satisfy. However, if a condition doesn’t
satisfy, code written inside else{} block will execute.

Syntax

if(condition)
{
//T0D0: Execute Code When Condition Satisfy

//T0D0: Execute Code When Condition Do Not Satisfy

¢ If (condition) returns true it will execute statements written inside {} curly brace.

e Else {} block will get executed when if(condition) returns false.

Example

To understand if-else, let’s write a basic login code. The following code will check if a username is correct,
it will print a message “Login Successful”. But if a user name isn’t correct, it will print “Invalid user name”
message on output screen.

Listing 1-26. Check username is correct

string username = "dev";

if(username == "dev")
{
Console.WriteLine("Login Successful");
}
else
{
Console.WriteLine("Inavlid username, please try again");
}

//0utput
Login Successful

16

CHAPTER 1 * FUNDAMENTALS OF C #

Note If username is other than “dev”, in that case “Invalid username, please try again” message will print
on screen.

If Else If {} Structure

Chain of multiple if and else makes if else-if. It helps a program to look into multiple conditions (options) to
execute a specific block of code.

Syntax
if(condition)

{
//T0D0: run if condition satisfy

else if(condition)
{
//T0D0: run if condition satisfy

else if(condition)

{
//T0D0: run if condition satisfy
}
else
{
//TODO: run if no condition is satisfied
}

e If (condition) returns true it will execute statements written inside {} curly brace.

e Else If(condition) control will check condition of else if only when if condition
returns false. When else if condition returns true it will execute code written inside
its body.

e When else-if(condition) returns false, control will then move to the next else-
if(condition). When next else-if(condition) returns false, it will move to further next
else-if(condition) and it will continue to do so until it finds else block of final else-if
structure.

e When any condition satisfied, control will execute code statement written inside its
block and skip the remaining else-if and else structure in its chain.

e Else {} will only get executed when no condition satisfies in its chain.

Example

Let’s make a program that checks your age and prints on output screen whether you're a child, teenager,
adult, or an old man.

17

CHAPTER 1 © FUNDAMENTALS OF C #

Listing 1-27. Check user age and display a nice message

int age = 20;
if (age < 11)

Console.WriteLine("You're a child!");
else if (age < 18)
Console.WriteLine("You're a teenager!");
else if (age < 50)
Console.WritelLine("You're an adult!");
}
else

{
}

Console.WriteLine("You're an old person");

In the above example, the first and second conditions do not satisfy but the third condition else if
(age < 50) satisfies, and the application will then print “You're an adult” on screen. After executing the code
block, the control will then skip the remaining else if and move out of the if-else structure.

Switch {} Structure in C#

Switch is another decision structure, highly recommend when we have given constants to compare with an
expression. If none of the constants matches with the expression, the default block will then execute.

Syntax
switch(expression)
{
case constant:
//case block
break;
case constant:
//case block
break;
default:
//default case block
break;
}

18

CHAPTER 1 * FUNDAMENTALS OF C #

Example

Suppose we're making an application that helps us decide whether a number is even or odd.

Listing 1-28. Check if number is even or odd

int 1 = 3;
switch(i%2)
{
case 0:
Console.WritelLine(“{0} is an even number”, i);
break;
case 1:
Console.WriteLine(“{0} is an odd number”, i);
break;
}

Note Use switch-case only when we have a defined list of constants that we can compare with the
result of an expression. Otherwise, use if-else structure.

Decision Operators

There are some operators in C# which help us to return a data only when a certain condition satisfies.
These are:

e Conditional Operator (?:)

e Null Coalescing Operator (??)

Conditional Operator (? :)

Conditional operator checks a condition and returns a value. If a condition satisfies, it returns a value that
lies in the “True” block. But if it doesn’t satisfy the condition, it returns a value that lies in the “False” block.

Syntax
(Condition) ? True Statement : False Statement;
Example

Suppose we're making an application that tells us whether a number is even or odd.

Listing 1-29. Check if number is even or odd

int num = 2;
string result = (num % 2 == 0) ? "Even" : "0dd";
Console.WriteLine("{0} is { 1}", num, result);

19

CHAPTER 1 © FUNDAMENTALS OF C #

Note Use a conditional statement only when you want to return a value. Otherwise, use an if-else statement.

Explanation
Let’s understand how a conditional operator works in the above example.
¢ ((num % 2) == 0) It’s a Boolean expression or a condition to be satisfied.

e ?It’sa conditional operator. That helps to decide which statement to return. If a
condition satisfies, it returns a True statement; and if it doesn’t satisfy a condition, it
returns a False statement.

e “Even”:“0Odd” These are two statements, separated by colon (:). A true statement is
before a colon (:) and a false statement is after colon (:)

Null Coalescing Operator (??)

There are many cases when we make sure that we don’t store a Null value in a variable. We can achieve this
by using a Null Coalescing operator. It returns a left-hand variable (operand) if it’s not null; otherwise, it
returns a default value stored in a right-hand variable (operand).

Syntax

leftOperand ?? rightOperand;

Code Snippet

Listing 1-30. Set value “user” in username if “name” is null

string name = null;

//set username = name, if name is not null.
//set username = “user”, if name is null.

string username = name ?? "user";

Loops in C#

In a real application we sometimes execute same a block of code multiple times. In such a case, we use
loops to iterate over the same code statements for x number of times.
In C# we have four kinds of loops that we can use to iterate a code statement for multiple times.

e while loop
e do-whileloop
e forloop

e foreachloop

While Loop

While loop helps to iterate over code statements till a condition written inside while() returns true.

20

CHAPTER 1 * FUNDAMENTALS OF C #

Syntax

while(condition)

{
}

Code Snippet

//Execute Code: as long as condition returns true.

Listing 1-31. Use while loop to print hello world for 20 times

bool isFound = false;
int value = 0;
while (isFound != true) //check whether or not run code inside its block

{
If(value == 99)

{
}

value = value + 3;

isFound = true;

Note Use while loop when you know a condition to be true and you don’t know how many times it is going
to iterate over a code block.

Do-while Loop

Do-while loop helps to iterate over code statements. It works the same as while loop; the only difference is
the condition always checks at the end.

Syntax

do
{

//Run Code: till condition is true
}while(condition);
Code Snippet

Listing 1-32. Use do-while loop to print Hello World for 5 times

int count = 1;
do //Do not check condition on first iteration

{
Console.WritelLine("Hello World");
count++;

} while (count <= 5); //check condition: if true, do block execute

21

CHAPTER 1 © FUNDAMENTALS OF C #

Explanation

When do-while runs for the first time, it doesn’t check the condition; instead it runs the code inside it.
When the first iteration is complete, it then checks the condition to run the iteration for the second time.
It will continuously repeat it so as long as the condition is true.

For Loop

For loop is used in a case when we have fixed numbers to iterate a code block for multiple times.

Syntax

for(variable initialization; condition; increment/decrement)
{ //Run Code: till condition is true

}

Explanation

Let’s understand the syntax of for loop.

e variable_initialization: In this part of loop, the variable is declared and initialized
or only initialized and this statement (first part of loop) is executed once when the
controls enter the loop.

¢ Condition: Condition gives a green signal to loop to iterate over the code block only
when a condition returns true.

¢ Increment/decrement: Increment/decrement helps to control the iteration of loop.

Code Snippet

Listing 1-33. Use for loop to print “Hello World” for 5 times

for(int count = 1; count <= 5; count++)

{

Console.WritelLine("Hello World");
}
Explanation

int count = 1; here’s a count value initialized with the value 1; afterward, a condition will be checked if it’s
satisfied, then a control can enter into it for the loop body to run all the statements written inside it. After
executing an iteration of loop, a control will then move to a for loop signature to run count++; this allows
a count variable to remember how many times it has executed. Afterward, it checks a condition and if it
satisfies again, it goes into a loop body to run all statements. It repeats the same cycle (check condition »
run loop body » increment value of count) as long as a condition is true.

Note For loop is useable when a number of iterations and conditions for termination is defined.

Foreach loop

Foreach loop always works on collection; the number of iterations depends upon the length of its collection.
On each iteration, foreach loop gets a value of the next index of a collection.

22

CHAPTER 1 * FUNDAMENTALS OF C #

Syntax

foreach(var item in collection)

{

}
Code Snippet

//Run Code

Listing 1-34. Use foreach loop to iterate over an array

int[] array = { 1, 2, 3, 4, 5 }; //Collection of int

foreach (int item in array) //iterating over each index of collection
{
Console.WriteLine(item); //print value stored in that index
}
Explanation

Let’s break down a code snippet of foreach and understand its working step by step.
e intitem: is a placeholder variable that stores a value that particular index of array has.

e inis akeyword, which gets the value of an array[index], until it gets all the index
values in a continuous iteration over an array.

e arrayit’s the name of an int[] collection defined above a foreach loop.

Note We cannot modify the value of a collection while iterating over it in a foreach loop.

Jump Statements in C#

Jump statements allow program controls to move from one point to another at any particular location
during the execution of a program.
Below are the jump statements that we can use in C#:

e Goto

e Break

e Continue
e Return

e Throw

Goto

A goto statement is a jump statement which transfers its controls to a labeled statement. The goto statement
requires the label to identify the place where control will go. A label is any valid identifier and must be
followed by a colon. The label is placed before the statement where control is to be transferred.

23

CHAPTER 1 © FUNDAMENTALS OF C #

A common use of goto statement is in switching transfer control to specific switch-case or nested loops
to change the control when work is done or depends on the scenario

Syntax

label:
//some code
goto label;

OR

goto label;
label:
//some code

Goto Statements in Switch Case

Listing 1-35. Use “goto” in switch-case

char character = 'e';

switch (character)

{
case 'a':

{
Console.WriteLine("Character is a vowel.");
break;

}

case 'e':

{
goto case 'a’';

}

case 'i':

{
goto case 'a';

}

case 'o':

{
goto case 'a';

}

case 'u':

{
goto case 'a’;

}

case 'y':

{
Console.Writeline("Character is sometimes a vowel.");
break;

}

default:

{
Console.WritelLine("Character is a consonant");
break;

}

}

24

CHAPTER 1 * FUNDAMENTALS OF C #

//0utput:
Character is vowel.

Explanation

. n “ n

In the above code example, control jumps into case “e” Inside case “e” goto case “a” statement executes and
control will then jump into case “a” block and print “Character is vowel.” on output screen.

Goto Statements in Loops

Let’s take another simple example to understand goto more clearly:

Listing 1-36. Use goto in for loop

int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

for (int i = 0; 1 < 10; i++)

{
if (numbers[i] == 8)
{
goto Control;
}
}

Console.WritelLine("End of Loop");

Control:
Console.WriteLine("The number is 8");

//0utput
//The number is 8

Explanation

In the above example, whenever the compiler detects the value of numbers[i] and if there is an 8, then the
compiler will move to label “Control” and start executing the code after label “Control” So the output will
just be “The number is 8”.

Note There are two forms of goto statements: Forward Jump and Backward Jump. Figure 1-4 shows the
flow of goto statement in forward and backward manner.

25

CHAPTER 1 © FUNDAMENTALS OF C #

Label:
[Goto Label;] Statement{Code]
Forward Jump
Backward Jump
Label:
Statement(Code) [Goto Label;]

Figure 1-4. Goto Statement's flow

¢ Goto Statements with Loop example shows forward jump

¢ Goto Statements with Switch shows backward jump of goto statement.

Note Avoid goto statements in such scenarios which lead to the unreachable code.

Break

Break is a keyword that is also a jump statement, which terminates the program flow in loop or in switch
statement (i.e., skips the current block and moves to outer block or code if any).

Use break statement in loop

Listing 1-37. Use break in for loop

int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
for (int i = 0; 1 < 10; i++)

if (numbers[i] == 3)
{

}

Console.Write(numbers[i]);

break;

}

Console.WriteLine("End of Loop");

Explanation

When above code snippet executes, output will be “End of Loop” Let us understand how.

26

CHAPTER 1 © FUNDAMENTALS OF C #

When an if condition written inside for loop satisfies, break keyword will then execute. It terminates the
remaining iteration of loop and jumps the control out from the loop and will start executing code which is
written outside the loop, i.e., “Console.WriteLine(“End of Loop”);”.

Continue

Continue statement is also a jump statement, which skips the current iteration and moves the control to
the next iteration of loop.
Continue is a keyword, the same as break but with the above said behavior.

Use continue statement in loop

Listing 1-38. Use “continue” in for loop

int[] numbers = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
for (int i = 0; 1 < 10; i++)

{
if (numbers[i] == 5)
{
continue;
}
Console.Write(numbers[i]);
}

Console.WriteLine("End of Loop");

Explanation

In this example, the for loop will work normally as it works, but when the value numbers[i] becomes 5, it
will skip the iteration, which means it will stop executing the current iteration further and move for the next
iteration.

//0utput
1234678910 End of Loop

Return

Return is also a jump statement, which moves back the program control to calling method. It returns a
value or nothing depending on the nature of method (i.e., return type of method).
Return is also a keyword with above said behavior.

Use return in method (a)

Listing 1-39. Use “return” in method

static int getAge()
{

}

static void Main(string[] args)

return 20;

27

CHAPTER 1 © FUNDAMENTALS OF C #

{
Console.WritelLine("Welcome to Exam 70-483 Certification");
int age = getAge();
Console.WriteLine("Age is: " + age);

}

Explanation

In this example, the method getAge() is a type of int, so method returns the value of type int and control
automatically goes to where it is calling, i.e., int age=getAge() in main method. So the value returned by the
method getAge is stored in the “age” variable.

Use return Statement in Main Method (b)

Listing 1-40. Return statement in main method

static void Main(string[] args)

{
Console.WriteLine("Welcome to Exam 70-483 Certification");
return;
Console.Writeline("This Statement will never executed!");
}
Explanation

In the second above example, method has returned type void, meaning nothing, therefore it has no need to
return value. In such a case, we use “return” statement without a value, which helps to skip the remaining
statements of method and jumps the control back to where the method was called. Note:

e Ifreturn statement is used in try/catch block and this try/catch has finally block,
then finally block will execute in this condition also and after it control will be
returned to calling method.

e Tip: code after return statement is unreachable. Therefore it is wise to use the return
statement inside the if-else block, if we are willing to skip the remaining statement
of method only when a certain condition satisfies. Otherwise execute the complete
method.

Methods in C#

Method contains a series of code statements that perform a certain functionality. It helps to organize code
better, eliminates duplication of code, and helps to re-use it over and over again.

Syntax

Return_Type Method Name (Parameter List)
//T0D0: Method Body

}

¢ Method_Name: Method has a unique name, which helps to re-use the functionality
of code whenever it is called.

28

CHAPTER 1 * FUNDAMENTALS OF C #

¢ Return_Type: Method contains a series of code statements that manipulate data
and generate results. If that result has to be used somewhere else in code, then data
has to return where it is called. Return_Type helps us to describe, what type of data
a method will return. If a method doesn’t return any value, then use “void” for its
return type.

e Parameter_List: We can pass values in methods through parameter_list. The type of
value must match with the method’s parameter type.

e Method Body: Here we write code statements that a method must contain. It
executes only when method is called by its name in code.

Code Snippet

Suppose we want to make a method that takes two int values, adds them and returns a result.

Listing 1-41. Return aresult

int Sum (int a, int b)
{
int add = a + b;
return add;

Now, method has a list of parameters. These parameters are adding up in the “add” variable; in the next
statement, value stored in the variable “add” is returned. Note, the type of return variable must match with
the return_type (int) of the method.

Note All variables defined inside method’s body are local variables.

Named Argument

A named argument in methods helps us to pass values in random order. All we need to do is use a
parameter name with a colon (:) and pass value there. For example, in the previous method example we
made “Sum” method, which takes two parameters “(int a, int b)”. Now, with the named argument we can
pass “b” value first and “a” value last.

Listing 1-42. Use named arguments to pass value during method calling

Sum (b: 5, a: 10);

Optional Argument

When we define a list of parameters in method’s signature, it becomes compulsory and required to pass
values for all parameters. Optional argument gives us an edge to mark a parameter as optional, so we can
call a method without passing value in optional parameter.

All we need to do is to give some default values to parameters which should be marked as optional.
Doing that allows a user to call a method without passing values to an optional parameter.

29

CHAPTER 1 © FUNDAMENTALS OF C #

Listing 1-43. Define optional parameter

int Sum(int a, int b = 1)

{
int add = a + b;
return add;

Now, look at parameter int b; it has a default value = 1, which helps the user to call Sum method without
passing the value of “int b” In that case, “int b” would have a default value = 1. If the user passes a value of
“int b’ then the default value will be overridden with the newest value provided by the user. For example,

Listing 1-44. Use feature of optional argument during method calling

Sum (10); //la =10, b =1
Sum (10, 5); // a=10, b =75

Pass by Reference with ref Keyword

ref keyword helps us to pass an argument by reference. Any change to the parameter’s value in the method
would reflect the same changes to the original variable’s value, where the method’s argument was being
called.

Syntax

The syntax of passing argument by reference with “ref” keyword is extremely simple. Just write “ref” keyword
before defining a parameter in method’s signature and when passing an argument while calling a method.

myMethod(ref data);
//use “ref” with parameter value when method is called

void myMethod(ref int d)
{

}

//use “ref” with parameter definition in method's definition

//T0ODO:

Example

In below code we're incrementing value of ref parameter by one. The same changes would reflect to the
original variable where method is called.

Listing 1-45. Change variable original value by passing it in method argument by refernce

class Program

{
static void PassByRef(ref int i)
{
i=1+1;
}

30

CHAPTER 1 * FUNDAMENTALS OF C #

static void Main(string[] args)

{
int j = 0;
PassByRef(ref j);
Console.WriteLine(j); //j =1
}

In above code, see definition of PassByRef() method, “ref” keyword is written before int i, which tells
us that this parameter would take reference, not its value. Now also see inside Main () method, where
PassByRef() is being called. Here we also wrote “ref” before variable “j, which we're passing as an argument.
It tells to pass a reference of “j” (not the value of “j”), which is basically a memory address. In the next
statement we print the value of “j” Then every change that happens in PassByRef() would affect the same

)
usn

change in “j, which means “j” value is now 1.

wsn
]

wn
J

Pass by Reference with out Keyword

out keyword works same as ref keyword works. The difference is, we can pass a non-initialized variable
to method’s argument by using out keyword. Also, it is used to get more than one return parameter from a
method. Out signifies a reference parameter, whichs mean out keyword passes an argument by reference.

Note The value of an out variable must be initialized in method’s body.

Syntax

The syntax of out keyword is the same as ref keyword. We write “out” keyword before a parameter before
defining a parameter in method’s signature and before passing an argument while calling a method.

MethodName(out variableName);
//use out keyword with paremeter when method is called.

void MethodName(out v)
{

}

//use out keyword with parameter when method is defined

//T0ODO:

Example

In below code, we're initializing a parameter value in method. The same changes would affect the variable,
which was passed as an argument of the method.

Listing 1-46. Pass empty variable in method argument via out keyword and initialize it in method’s body

class Program

{
static void outMethod(out int i)
{
i=1;
}

31

CHAPTER 1 © FUNDAMENTALS OF C #

static void Main(string[] args)

{
int j;
outMethod(out j);
Console.Writeline(j); // j =1
}

In main method, see that the variable “j” is not initialized and passed to outMethod. When passing it to
outMethod we must write the “out” keyword. Inside the outMethod body, the value of “I” is initialized with

usn

1. The same changes will affect the original variable in main method “j; because the value of j is not 1.

Use Params Array to Pass Unlimited Method Argument

The number of arguments of a method depends upon the length of a parameter list in method’s signature.
For example, in our previous example of “Sum” method, we cannot pass more than two values in its
arguments. But with param array we can pass an unlimited number of arguments.

Syntax

The syntax of using params array is simple; just write “params” before an array type in the method’s
parameter list.

void myMethod (params int[] args)

//T0DO:

Example

Suppose we are required to make a method which takes unlimited arguments and returns a sum of all the
arguments’ values.

Listing 1-47. Add unlimited arguments and return its result

int Sum(params int[] args)

{ int add = 0;
foreach (int item in args)
{ add = add + item;
}

} return add;

32

CHAPTER 1 * FUNDAMENTALS OF C #

In the above code snippet, see that “params” keyword is used before int array. The code written in
method body is simple and straightforward. It is iterating over all arguments and adding each one of them
with the next value. In the end it returns the sum of all arguments.

Sum (1, 2, 3, 4, 5); // return 15

In the above line, Sum method is being called, passed 5 arguments, and it returns a sum of 5 arguments
(which is 15).

Note 1 - A method shouldn’t have more than one param array.

2 - If there is more than one parameter, params array shoud be the last one.

Summary

var is an implicit type; it can store data of any type at compile time.
Operators are special symbols that manipulate data to produce a required result.
C# is a strongly typed language.

No data loss in implicit type conversion. No special syntax required for implicit type
conversion.

Data may be lost in explicit type conversion. Special syntax required for explicit type
conversion.

Jagged array is an array of an array, which means number of rows in jagged array is
fixed but number of columns isn't fixed.

Use “ref” keyword in method’s parameter to pass data by its reference.
Use “params array” to pass unlimited arguments in methods.

Use switch when we have given constants to compare with.

To repeat statements again and again use loops.

To iterate over collection use foreach loop.

Use jump statements (i.e., goto, break, continue, and return) to change normal flow
of program.

Code Challenges

Challenge 1: Develop an Arithmetic Calculator Application

Develop a calculator application that helps users to add, subtract, multiply, or divide two values.

33

CHAPTER 1 © FUNDAMENTALS OF C #

Output should be like:

Press any following key to perform an arithmetic operation:

1 - Addition

2 - Subtraction

3 - Multipliation
4 - Division

1

Enter Value 1: 10
Enter Value 2: 20

10 + 20 = 30
Do you want to continue again (Y/N)?
Tips:

e Use separate method for +, -, *, /

e Use switch-case structure to select user choice.

e Use while loop to repeat the program until user presses “N”.

Challenge 2: Develop a Student Report Card Application

Develop a report card application that saves students’ marks information; show position and report card of
each student in descending order.

Requirements
e Each student has three subjects (English, Math and Computer).
e Application will save each student’s marks along with student’s name.
e Application will calculate total marks.

e Application will show position and report card in descending order.

Output should be like:

Press any following key

Enter Total Students : 2

Enter Student Name : Lakhtey

Enter English Marks (Out Of 100) : 50
Enter Math Marks (Out Of 100) : 60

Enter Computer Marks (Out Of 100) : 30

34

CHAPTER 1

3k 3k 3k ok ok ok ok ok 5k ok 5k ok 5k ok 3k ok 5k ok 5k ok 3k ok 5k ok 3k ok 5k ok 3k ok 5k >k sk ok sk >k sk ok k ok sk kk k k-

Enter Student Name : Ali Asad
Enter English Marks (Out Of 100) : 60
Enter Math Marks (Out Of 100) : 70

Enter Computer Marks (Out Of 100) : 30

iRk RepOT T (AT ok

Skosk skeok sk sk kok sk sk sk ok sk sk skskesk sk sk skosk skoskoskok skosk skok skosk kokesk sk kosksk sk >k
Student Name: Ali Asad, Position: 1, Total: 160/300

skokskokok sk sk ok ok sk sk ok sk sk ok sk sk ok sk sk sk ok sk skokok sk sk ok sk sk kok sk ok ok
Student Name: Lakhtey, Position: 2, Total: 140/300
sk sk sk ok sk sk sk ok sk sk sk ok sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk sk k

Tips:
¢ Use multi-dimension array to store student’s information.

e Useloops to iterate over each student’s information to generate report.

Practice Exam Questions

Question 1

FUNDAMENTALS OF C #

Which of the following methods help us to convert string type data into integers? Select any two.

A) Convert.toInt32();
B) Convert.Int32();
C) int.parse();

D) parse.int();

Question 2

Suppose you're implementing a method name “Show” that will be able to take an unlimited number of int

arguments. How are you going to define its method signature?
A) void Show(int[] arg)
B) void Show(params int[] arg)
C) void Show(int a)
D) void Show(refint a)

35

CHAPTER 1 © FUNDAMENTALS OF C #

Question 3

You're developing an application that saves user’s information. The application includes the following code
segment (line numbers included for reference).

01 public bool IsNull(string name)
02 {

03 return true;

04 }

You need to evaluate whether a name is null.
Which code segment should you insert at line 03

A)
if (name = null)
{

return true;
}
B)
if (name == null)
{

return true;
}
o)
if (null)
{

return true;
}
D)
if (!name)
{

return true;
}
Question 4

You need to use null-coalescing operator to make sure “name” variable must have a value not null. Select the
right way to use null-coalescing operator in C#.

A) string name = n ?? “No Name”;
B) string name = “No Name” ?? null;
C) stringname = “No Name” ? null;

D) string name = null ? “No Name”;

36

CHAPTER 1 © FUNDAMENTALS OF C #

Question 5
Which jump statement will you use to start the next iteration while skipping the current iteration of loop?
A) Break

B) Continue

C) Goto

D) Return
Answers

1. AC

2. B

3. B

4, A

5 B

37

CHAPTER 2

Types in C#

C# is a strongly-typed language. It says, data must have a type that defines its nature and behavior. Type
helps to manipulate data in a much managed way. We’ll cover the following main objectives that help to
create and consume types in C#.

1. Understand Types
Create Types
Types and Memory Management

Special Types in C#

A

Type Conversion

Understand Types

Types are the declaration of an object which stores information and actions, that an object uses to produce
required results. Type also stores the following information:

e How much memory an object holds
e Memory location where object is stored in memory
e The base type it inherits from

This information helps the compiler to make sure everything is type safe. In the previous chapter, we
learned how to create variables by using common built-in types, i.e., int, float, and bool.

Code Snippet
Listing 2-1. Built-in types in C#

int age = 22;
string name = "Ali Asad";

Create Types

C# allow users to create their own types by using:

1. Enum
2. Struct
3. Class
© Ali Asad and Hamza Ali 2017 39

A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_2

CHAPTER 2 © TYPES IN C#

Enum

Enum, a.k.a enumeration, is a set of named integer constants. It is used to group similar logically named
constants (for example, days of the week and rainbow colors, etc.).

Syntax

enum MyEnum

{
}

//1ist of named constants

Code Snippet

Listing 2-2. Use enum inside switch-case structure

enum Status

{
Alive,
Injured,
Dead
}
class Program
{
static void Main(string[] args)
{
Status player = Status.Alive;
switch (player)
{
case Status.Alive:
//Do Alive Code
break;
case Status.Injured:
//D0 Injured Code
break;
case Status.Dead:
//Do Dead Code
break;
}
}
}

e Status player = Status.Alive; tells player is alive.

40

CHAPTER 2 © TYPES IN C#

Note In decision structures, enums are mostly used with a switch statement that uses enum’s constant
value to quickly jump over to a specific case block.

e Enums are useable to use constant values.
¢ Enums are readable and to give just information that is required in code.

e Enums are strongly typed. Therefore, an enum of one type cannot be implicitly
assigned to an enum of another type.

Enum and Integer

By default, the first value of enum’s named constant is always “0” and the value of each successive
enumerator is increased by “1”.
For example, in following enum’s constants, the value of Alive is 0, Injured is 1, and Dead is 2.

Listing 2-3. Default value of enum’s constants

enum Status

{
Alive, //0
Injured, //1
Dead //2

}

To get the integer value of each constant an explict cast is necessary.
int valueOfAlive = (int)Status.Alive;
valueOfAlive would store '0'.

Override Constant’s Values

Use initializers to override the default value of enum’s constants. Therefore, subsequent constants are forced
to increment their values from the override value. In the following code snippet, Alive is initialized with the
value 2. Therefore, injured will have 3 and Dead will have 4.

Listing 2-4. Initialize enum’s constant values

enum Status

{
Alive = 2,
Injured, //3
Dead //4

}

41

CHAPTER 2 © TYPES IN C#

Supporting Types

Enum supports the following types for its constant’s values:

e Dbyte

e sbyte
e short
e ushort
e int

e uint

e long

e ulong

Enforce enum to store the value in the above type.

Listing 2-5. Change enum’s constants type to “byte”

enum Status : byte

{

Alive = 1,

Injured,

Dead
}

The value type of Alive would be byte. It helps to minimize the memory storage required to initialize an enum.
Struct

Struct is used to encapsulate the attribute and behavior of an entity. It’s used to define those objects which
hold small memory. Most primitive types (int, float, bool) in C# are made up from struct. Struct doesn’t
support all object-oriented principles.

Syntax

struct NameOfType

{
/...

}

e structis a keyword, used to declare a type.
Code Snippet

Listing 2-6. Define and use custom type “Vector” with struct

struct Vector

{
public int x;
public int y;

42

CHAPTER 2 © TYPES IN C#

class Program

{

static void Main(string[] args)

{

Vector vector = new Vector();
vector.x = 5;
vector.y = 10;

Console.WritelLine("x = {0}", vector.x);
Console.WriteLine("y = {0}", vector.y);

Vector vector = new Vector(); declare and initialize custom type Vector with new
keyword.

un

vector.x = 5; assign a value 5 to its attribute “x”.

The data encapsulated by struct are its data member. The variables are known as fields and functions
included in it are called member functions.

struct is not limited to fields, but it can also have functions, constructors, indexers, events, nested
types, and an implemented interface.

Constructor in struct

Constructor is a method called and executed first by runtime soon after its type’s instance is created on
memory. It doesn’t have a return type. It is used to initialize data members that protect the application from
any garbage computation error.

Syntax

Default Constructor (parameter less) is not allowed in struct.
Constructor is optional in struct but if included it must not be parameterless.

Constructor can be overload but each overloaded constructor must initialize all
data members.

Data members or fields cannot be initialized in the struct body. Use constructor to
initialize them.

Creating the object (without a new keyword) would not cause constructor calling
even though a constructor is present.

struct TypeName

public TypeName(parameterlist)

{
}

//initialize fields

//declare fields

43

CHAPTER 2 © TYPES IN C#

Code Snippet

Listing 2-7. Define parameter constructor in struct

struct Vector

{
//Constructor
public Vector(int a, int b)
{
//Initialize Fields
X = a;
y = b;
}
//Fields
public int x;
public int y;
}
class Program
{
static void Main(string[] args)
{
//Initialize Vector, by passing 5,10 value to its constructor
Vector vector = new Vector(5, 10);
Console.WriteLine("x = {0}", vector.x);
Console.WriteLine("y = {0}", vector.y);
}
}

e new Vector(5, 10); passed 5,10 values to its constructor. Therefore, it could initialize
its fields.

Note Don’t use struct to define complex types.

this keyword

this keyword indicates current instance. It is a special reference type variable that is used to call an
instance’s member inside non-static method definition.
this keyword has many uses:

e To pass an object itself as a parameter to other methods.
e Toreturn an object itself from a method.
e To declare an extension method.

¢ To eliminate the naming conflict of a parameter’s variable name and instance field name.

44

CHAPTER 2 © TYPES IN C#

Code Snippet

Listing 2-8. Use “this” operator to access the instance member of a Vector type

struct Vector

{
//Constructor
public Vector(int x, int y)
{
//Initialize Fields
this.x = x;
this.y = y;
}
//Fields
public int x;
public int y;
}
e this.xreferred to instance variable x (public int x).
e this.x = x; here x is alocal (method parameter) variable which stores the value in an
instance variable “x” (public int x).
Class

Class is used to encapsulate the attribute and behavior of an entity. It supports object-oriented principles.
Therefore, classes are helpful to define complex types.

Syntax
class <class_name>
{
// Fields
// properties
// Constructors
// methods
// events
// delegates
// nested classes
}
Code Snippet

”

Listing 2-9. Define and use custom type with “class’

class Person

{
public string name;
public int age;

45

CHAPTER 2 © TYPES IN C#

public void Display()

{
Console.WriteLine("Name = {0} Age = {1}", name, age);
}
}
class Program
{
static void Main(string[] args)
{
Person person = new Person();
person.name = "Hamza Ali";
person.age = 20;
person.Display();
}
}

Constructor in Class

Constructor is a method, called and executed first by runtime soon after its type’s instance is created on
memory. It doesn’t have a return type. It is used to initialize data members that protect the application from
any garbage computation error.

Syntax

class TypeName

{
public TypeName()
{

//initialize data member

}

//declare data member

Code Snippet

Listing 2-10. Define default constructor in class

class Person

{

public string name;
public int age;

//Default Constructor
public Person()

{
name = "NILL";

age = -1;

46

CHAPTER 2 © TYPES IN C#

e Default constructor doesn’t have a parameter.

e (Class can also have a parameterized constructor as well.

Base Constructor

Class may have many derived classes. A derived class inherits attributes and methods of its base class. If a base
class has a parameterized constructor, its derived class must pass values to initialize its base class’s constructor.

Syntax

class DerivedClass : BaseClass

{

public DerivedClass(type x):base(x)

{
}

e base(..) it calls and passes values to a parameterized constructor of BaseClass.

e Derived class constructor at least has same parameters of BaseClass’s constructor.
Therefore, it could pass value to its base class’s constructor.

Code Snippet

Listing 2-11. Pass value to parent class’s constuctor

class Person

{
protected string name;
protected int age;
public Person(string name, int age)
{
this.name = name;
this.age = age;
}
}
class Employee : Person
{
public Employee(string n, int a) : base(n, a)
/...
}
}

class Program

{

47

CHAPTER 2 © TYPES IN C#

static void Main(string[] args)

{

Employee emp = new Employee("Hamza", 20);

¢ Employee emp = new Employee(“Hamza’, 20); it calls and passes values to a
parameterized constructor of BaseClass.

Types and Memory Management

In the above topic, we learned how to create types by using enum, struct, and class. C# has a concept to
define these terms in: Value and Reference type.

Value Type

A type that is defined by either struct or enum is known as a value type. It holds data in its own memory
allocation.

Reference Type

A type that is defined by either class, interface, or delegate is known as a reference type. It holds a pointer to
a memory location that contains data called reference type.
In a .NET framework, CLR manages instances of value and reference type on three memory locations:

1. Heap
2. Stack

3. Registers

Heap

It's a memory location where instances of reference type are stored. Instances of value type can also be
stored on heap when:

e value typeis part of a class;

e value type is boxed;

e value type is an array;

e value type is a static variable;

e value type is used in an async or iterator block;

e value type is closed-over locals of alambda or anonymous method.

Instances of value type live longer only when any of the above cases is true. Heap is an ideal location for
instances that have a longer lifetime.
For example, in the following code snippet, see how CLR manages memory allocation.

string address = "Sialkot, Punjab";

48

CHAPTER 2 © TYPES IN C#

The following figure 2-1 shows managed memory Heap.

Stack Heap

Sialkot, Punjab

0x00000

v

Figure 2-1. Managed memory heap

name 0x00000

Note The memory size of heap is larger than the Stack and register’s size.

Stack

It's a memory location where short-lived temporary instances of value type and the memory address of an
object can be stored. Temporary short-lived variables that Stack can store are:

e value types that are declared inside a method body or inside a parameter list;
¢ the memory address of an instance of a reference type.

It uses LIFO (Last In First Out) algorithm to manage the lifetime of each variable in a Stack. Its memory
size is relatively smaller than heap, as shown in Figure 2-2.
For example, in the following code snippet, see how CLR manages memory allocation.

int age = 22;

49

CHAPTER 2 © TYPES IN C#

age

Stack

22

Figure 2-2. Stack

Register

It's a memory location where instances of short-lived temporary instances of value type or computation
values of arithmetic operations are stored on register. Its memory size is relatively much smaller than Stack.
Its up to CLR, which decides which short-lived memory instances are stored on either Stack or on Register.

Special Types in C#

C# provides special types which are syntactic sugar for users. These types help users to maximize their
productivity by writing helper code inside them. These special types are listed below.

System.Object type
anonymous type
dynamic type
nullable type

static type

System.Object Type

All value and reference types are derived from system.object type. In .NET, object is the base of all type
hierarchy. The below Figure 2-3 shows system.object’s type hierarchy.

50

CHAPTER 2 © TYPES IN C#

system.object

/

System.ValueType

1

System.Enum
Value Type Reference Type
All builtin All builtin
user-defined struct value types user-defined class reference types
user-defined user-defined
user-defined enum interface delegate

Figure 2-3. System.object’s type hierarchy

Because all types in .NET are derived from system.object, it can handle values of all types. For example,
in the following code snippet, object has stored both values of string and int.
Listing 2-12. Store any type’s data in system.object type
object name = "Ali";
object age = 22;
Every type in .NET inherits methods of system.object type, which they can override. These methods are:
e Equals use to compare two objects.
¢ Finalize use to execute cleanup operations before object gets destroyed.
e GetHashCode use to get object’s hash value from HashTable.

e ToString use to get object’s information in text form.

Anonymous Type

Types that don’t have names are called anonymous types. They are used to group temporary data into read-
only properties. Unlike class, anonymous types don’t have a blueprint to define property types. Therefore,
each property must have a data to determine its property type.

Anonymous types are created by using a new operator with object initializer. The implicit type variable
var is used to hold the reference of anonymous types.

Syntax

var variableName = new {/*object initializer*/};

51

CHAPTER 2 © TYPES IN C#

Code Snippet

Listing 2-13. Define and use anonymous type in C#

var person = new { Name = "Ali", Age = 22 };

Console.WritelLine("Name = {0}", person.Name);
Console.WriteLine("Age = {0}", person.Age);

//0utput
Ali
22
Remarks
¢ Inanonymous type, property value cannot be null.
e Anonymous type doesn’t have method definition.
e Anonymous types are class type.
e Anonymous type cannot be used as method’s parameter of return type.
e Anonymous type is useful to store query result from collection.
Dynamic Type

Dynamic type is used to store and manipulate any data whose types definition and operation errors are
determined at runtime. It ignores compile-time checks. Therefore, it is easy to access COM and DOM APIs
with dynamic type.

It is defined by using a dynamic keyword.

Syntax

dynamic variableName = data;

Code Snippet

Listing 2-14. Use dynamic type

dynamic price = 20;
Console.WritelLine(price.CGetType());

dynamic name = "Ali";
Console.WritelLine(name.GetType());

//0utput

System.Int32
System.String

Unlike implicit type (var keyword), dynamic type can store values of different types with the same
dynamic variable. Therefore, a dynamic variable can change its type at runtime.

52

Listing 2-15. Change dynamic variable’s type at runtime

dynamic i = "Ali";
Console.WriteLine(i.GetType());

i=22;
Console.WriteLine(i.GetType());
//0utput

System.String

System.Int32

Remarks

CHAPTER 2 © TYPES IN C#

e Dynamic type can be used for field, property, indexer, method parameter, and return

type.

e Exception is thrown at runtime if data type or member name is not compatible.

Nullable Type

Normally, value type cannot be assigned with null value. But with nullable type, value type can be assigned

with null value.
Value type can become nullable type by using “2”.

Syntax

valueType? variableName = null;

Code Snippet

Listing 2-16. Nullable type of bool

bool? isMarried = null;
isMarried = true;

?? Operator

Use null-coalescing “??” with nullable type to non-nullable type.

Listing 2-17. Use null-coalaescing operator with nullable types

bool? isMarried = null;
bool married = isMarried ?? false;

Important Points

e Nullable<T> is an alternative of “?” operator. The above example can be written as

Nullable<bool> isMarried = null;

e Value type is boxed whenever it becomes nullable.

53

CHAPTER 2 © TYPES IN C#

Static Type

Unlike normal classes, static classes cannot be instantiated. They're useful to define helper static methods.
Static class doesn’t have any instance member. All members must be static in static class. Therefore,
members of static classes can access by using the class name itself.

Static class is defined by writing a static keyword before the class definition.

Syntax

static class MyStaticClass

{
}

//define static members

Code Snipeet

Listing 2-18. Define static method inside static class

static class Helper

{ public static void MyMethod()
{
/...
}
}

Listing 2-19. Access static method

To access MyMethod() use following code:
Helper.MyMethod();

Static Constructor

Unlike normal class, static class doesn’t contain a public instance constructor. It contains a private static
constructor to initialize static members. It is called automatically before the first instance is created or any
static members are referenced.

Code Snippet

Listing 2-20. Define static constructor

static class Helper

{ public static int age;
static Helper()
age = 22;
}
}

54

CHAPTER 2 © TYPES IN C#

Extension Methods

Extension methods are special static methods. They inject addition methods without changing, deriving, or
recompiling the original type. They are always called as if they were instance method.

e Extension methods are always defined inside static class.

e The first parameter of extension method must have “this” operator, which tells on
whose instance this extension method should give access.

e The extension method should be defined in the same namespace in which it is used,
or import the namespace in which the extension method was defined.

Syntax

public static class ExtensionClass

{

public static void ExtensionMethod(this int origin)

{
}

//...

Code Snippet

Listing 2-21. Define and use extension method

namespace Extension

{
public static class ExtensionClass
{
public static bool isLessThan(this int origin, int compareValue)
{
//return true if origin value is less
if (origin < compareValue)
return true;
else
return false;
}
}
class Program
{
static void Main(string[] args)
{
int age = 22;
bool check = age.islLessThan(30);
Console.WritelLine(check);
}
}
}
//output
True

55

CHAPTER 2 © TYPES IN C#

age is an integer variable; it is called the isLessThan extension method. Remember, isLessThan is not
defined by a .NET framework for integers. Its functionality is added by using the extension method.

Value “30” is passed on the isLessThan parameter as compareValue, whereas this int origin refers to
the variable age itself.

Type Conversion

Conversion of one type to another is called type conversion. Type conversion has three forms:
1. Implicit Type Conversion
2. Explicit Type Conversion

3. User Defined Type Conversion

Implicit Type Conversion

If one type converts into another type automatically, it’s called implicit type conversion. This is done by the
compiler automatically. A common example is conversion of derived class to base class.

class A {...}
class B : A {...}
A a = new B();

Explicit Type Conversion

If one type needs special syntax to convert it into another type, it’s called explicit type conversion. This is
done by the user. A common example is conversion of base class to derived class.
Explicit type conversion is done by two ways:

1. askeyword
2. (type)value with is keyword

as operator

as is a keyword used to explicitly convert one type to another. If a type converts successfully, it would return
value in that type. If a type doesn’t convert properly, it returns null value.

Listing 2-22. Use “as” keyword for explicit type casting

class A {...}
class B : A {...}
A a = new B();

//convert explicitly from type A to B
Bb=aas B;

56

CHAPTER 2 © TYPES IN C#

is operator

It’s a keyword that is used to match a type. If a type matches it returns true; otherwise it returns false. A
common use of is keyword comes with (type) explicit type conversion.

(type)value is used to convert a type explicitly. If a type converts succesfully, it returns a value in that
type. If a type doesn’t convert properly, it throws an exception. To avoid this exception, it is common to
check the type inside the sandbox of is operator.

Listing 2-23. Use is keyword to match a type with another type

class A {...}
class B : A {...}
A a = new B();

if(a is B)

{
//convert explicitly from type A to B
Bb=(B)a;

}

Note To prevent from any casting exception, we use is keyword to check whether a type can be
convertible or not.

User Defined Type Conversion

C# allows users to provide the definition of conversion for their custom type. Its definition is similar to
operator overloading’s definition.
User defined conversion is of two kinds:

1. Implicit User Defined Conversion

2. Explicit User Defined Conversion

Implicit User Defined Conversion

A user can define an implicit conversion definition in a type that helps to convert it into another type.
Implicit conversion occurs automatically.

For implicit conversion, a special static method is defined with an implicit and operator keyword
inside the type definition.

Syntax

class MyClass

{
public static implicit operator returnType(type t)

{
}

/..

57

CHAPTER 2 © TYPES IN C#

¢ returnType tells which type of data would get returned in implicit conversion.

e type ttells which type would get convert implicitly.
Code Snippet

Listing 2-24. Define implicit type conversion definition

class Byte

{
public int bits = 8;
public static implicit operator int (Byte b)

{
return b.bits;
}
}
class Program
{
static void Main(string[] args)
{
Byte b = new Byte();
int totalBits = b;
Console.WritelLine(totalBits);
}
}
//0utput
8

Here, Byte “b” would get an implicit conversion into “int” by returning the total number of bits in a byte.

Explicit User Defined Conversion

A user can define an explicit conversion definition in a type that helps to convert it into another type. Casting
is required to convert a type into another. Data can be lost in explicit conversion.

For explicit conversion, a special static method is defined with an explicit and operator keyword
inside the type definition.

Syntax

Listing 2-25. Define explicit type conversion definition

class MyClass

{
public static explicit operator returnType(type t)
{
/...
}
}

58

CHAPTER 2

¢ returnType tells which type of data would get returned in implicit conversion.

e type ttells which type would get converted implicitly.

Code Snippet
class Person
{
public int Age { get; set; }
public string Name { get; set; }
public static explicit operator string (Person per)
{
return per.Name;
}
}
class Program
{
static void Main(string[] args)
{
Person per = new Person { Age = 22, Name = "Ali" };
string name = (string)per;
Console.WritelLine(name);
}
}
//0utput
Ali

where (string)per; casts a person’s data into “string” explicitly by returning Name of person.

Summary

e Enum constant’s values can override with integer value.

e Struct constructor must initialize all data members.

e Default value of reference type is always Null.

e Types defined with struct and enum are examples of value types.

e Types defined with class, interface, and delegates are examples of reference type.
e System.Object type is base class of all types in C# hierarchy.

¢ Anonymous types must have one or more read only properties.

e Dynamic types are useful for interacting with COM, DOM and Dynamic APIs.

e Value type can store null when it is declared as nullable “2”.

TYPES IN C#

59

CHAPTER 2 © TYPES IN C#

e Static types cannot be instantiated.
e Static types only have static members.

¢ Extension methods are only defined inside static class to extend the functionality of
an instance type.

e Special casting is required for explicit type conversion.
e asoperator is used to cast a type into another type.

e User can write their definition for type conversion by using implicit and explicit
keyword with special static methods.

Code Challenges

Develop Temperature Converter Application

Application has two classes: FahrenheitTemperature and CelsiusTemperature. FahrenheitTemperature
stores temperature in Fahrenheit and CelsiusTemperature stores temperature in Celsius. You have to define
conversion methods in both classes to convert Fahrenheit to Celsius Implicitly and vice versa.

Practice Exam Questions

Question 1

Suppose you're developing an application that saves age value in integers.
int age = 22;

You're asked to select the right code snippet for defining the extension method for age.

A)
class Extension
{ public static void ExtensionMethod(int i)
{
/...
}
}
B)
static class Extension
{ public static void ExtensionMethod(int i)
{
/...
}
}

60

C)
static class Extension

{

public static void ExtensionMethod(this int i)

{
}

/...

}

D)
static class Extension

{

public static void ExtensionMethod(int i)

{
}

//...

Question 2
Which operator is used to compare types?
A) as
B) is
C) this
D) *?

Question 3

Choose the right code segment for defining implicit type conversion for a Person class.

A
class Person
{
public string name;
public int age;
public static implicit operator this[int i]
{
this.age = i;
return this;
}
}

CHAPTER 2 © TYPES IN C#

61

CHAPTER 2 © TYPES IN C#

B)
class Person
{
public string name;
public int age;
public static implicit operator Person(string n)
{
Person person = new Person { age = 0, name = n };
return person;
}
}
C)
class Person
{
public string name;
public int age;
public static implicit Person(string n)
{
Person person = new Person { age = 0, name = n };
return person;
}
}
D)
class Person
{
public string name;
public int age;
public static implicit operator Person(this string n)
{
Person person = new Person { age = 0, name = n };
return person;
}
}
Question 4
Which operator is used to get instance data inside type definition?
A) as
B) is
C) this
D) 2

62

CHAPTER 2 © TYPES IN C#

Question 5
Which type cannot be instantiated?
A) enum type
B) static type
C) classtype
D) System.Object type

Answers
1. C
2. B
3. B
4, C
5. B

63

CHAPTER 3

Getting Started with Object
Oriented Programming -

C# provides full support of object oriented programming. In this chapter, you'll be walking through
following OOP topics:

1. Introduction to Object Oriented Programming
OOPinaPIE
Encapsulation

Inheritance

A

Polymorphism

Introduction to Object Oriented Programming

Object oriented programming (OOP) is a software design technique that helps to organize data and
methods in a single object. It helps objects to talk to each other by defining relationships among them.

In a 1994 “Rolling Stone” interview, Steve Jobs (CEO of Apple) explains object-oriented programming.
His explanation still helps us to learn what OOP is in simple terms.

Jeff Goodell: Would you explain, in simple terms, exactly what object-oriented software is?

Steve Jobs: Objects are like people. They're living, breathing things that have knowledge
inside them about how to do things and have memory inside them so they can remember
things. And rather than interacting with them at a very low level, you interact with them
at a very high level of abstraction, like we're doing right here.

Here’s an example: If I'm your laundry object, you can give me your dirty clothes and
send me a message that says, “Can you get my clothes laundered, please.” I happen to know
where the best laundry place in San Francisco is. And I speak English, and I have dollars
in my pockets. So I go out and hail a taxicab and tell the driver to take me to this place in
San Francisco. 1go get your clothes laundered, 1 jump back in the cab, I get back here. I give
you your clean clothes and say, “Here are your clean clothes.”

© Ali Asad and Hamza Ali 2017 65
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_3

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

You have no idea how I did that. You have no knowledge of the laundry place. Maybe you
speak French, and you can'’t even hail a taxi. You can’t pay for one, you don’t have dollars
in your pocket. Yet I knew how to do all of that. And you didn’t have to know any of it. All
that complexity was hidden inside of me, and we were able to interact at a very high level
of abstraction. That'’s what objects are. They encapsulate complexity, and the interfaces
to that complexity are high level.

Source:
http://www.edibleapple.com/2011/10/29/steve-jobs-explains-object-oriented-programming/

OOP in a PIE

In a nuthshell OOP has three fundamental pillars: Polymorphism, Inheritance and Encapsulation (PIE).
These pillars define flexibility to communicate with other objects, reusability to avoid duplication, and
data protection to hide the complexity of implementation from the outer world.

Encapsulation

Encapsulation is one of the three fundamental pillars of an object oriented program, which says, when data
(attributes) and methods (behaviors) are defined in a single entity, it is called Encapsulation. It also refers to
an object-oriented design principle called Data Hiding, which restricts the accessibility of data (attribute)
and method (behavior) of an entity that are not necessary to its user.

Encapsulation is implemented through two ways:

1. Access Specifiers

2. Data Protection

Access Specifiers

Access specifiers are special keywords, used to define the accessibility level of a type (class, struct, enum)
and all of the data members and methods defined inside it.

In C#, we have five kinds of access specifiers. Each access specifier defines a unique accessibility level.
These access specifiers are:

1. Public

2. Private

3. Protected

4. Internal

5. Protected Internal

Public

Members defined with public access specifiers are accessible within the class as well as outside the class.
Public data can also be accessible from outside the project.

66

http://www.edibleapple.com/2011/10/29/steve-jobs-explains-object-oriented-programming/

CHAPTER 3
Syntax
public Type MemberName;
Code Snippet

Listing 3-1. Define a method with public access specifier

class Access

{
public void Method()
{
Console.WritelLine("Public Method");
}
}
class Program
{
static void Main(string[] args)
{
Access access = new Access();
access.Method();
}
}
Private

GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Members defined with private access specifiers are only accessible within the class and they cannot be

accessed from outside the class.

Syntax
private Type MemberName;
Code Snippet

Listing 3-2. Define a field with a private access specifier

class Access

{
private int age = 10;
public int GetAge()
{
return age;
}
public void SetAge(int a)
{
age = a;
}
}

67

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

class Program

{
static void Main(string[] args)
{
Access access = new Access();
int age = access.GetAge();
}
}

Note Use public methods to access a private member in the outer world.

Protected

Members defined with protected access specifiers are accessible within the class and also within its child
classes. They cannot be accessible from outside the class.

Syntax
private Type MemberName;
Code Snippet

Listing 3-3. Define a field with protected access specifier

class Parent

{

protected int age;

class Child : Parent

{
public void Display()
{
Console.WriteLine("Age is = {0}",age);
//Console.WriteLine("Age is = {0}", base.age);
}
}

Note Base is a keyword, used to access members defined as public/protected access specifiers in a
parent/base class.

68

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Internal

Within the project’s assembly, members defined with internal access specifiers are accessible within
the class as well as outside the class. But they are not accessible to any class which is defined outside the
project’s assembly.

Syntax
internal Type MemberName;
Code Snippet

Listing 3-4. Define a field with an internal access specifier

namespace Csharp

{
class Access
{
internal int age = 10;
}
class Program
{
static void Main(string[] args)
{
Access access = new Access();
int age = access.age;
}
}
}

Note In C# classes by default are internal., which means no external assembly could access default
classes. They could only be accessible to other assemblies if classes are marked with public access specifiers.

Internal Protected

Internal protected is a union of internal and protected behavior of access specifiers, which says, within the
project’s assembly, members defined with internal protected access specifiers are accessible within as
well as outside the class and also to its child classes. But they aren’t accessible to any class which is defined
outside the project’s assembly scope.

Syntax

internal protected Type MemberName;

69

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Code Snippet

Listing 3-5. Define a field with an internal protected access specifier

namespace Csharp

{
class Parent
{
internal protected int age = 10;
}
class Child : Parent
{
public void Display()
{
Console.WriteLine("age = {0}", base.age);
}
}
class Program
{
static void Main(string[] args)
{
Parent parent = new Parent();
int age = parent.age;
}
}
}

Note Internal protected members aren’t only accessible to their child classes but also accessible to other
classes of the same project’s assembly.

Data Protection
In C#, data is stored in a single variable or in an array. To protect this data from accidental damage, we have:
1. Properties

2. Indexers

Properties

Properties are used to encapsulate the value of a private field. They use access specifiers, which gives better
control to read, write, or manipulate a field’s value. It creates a sandbox over fields, which protects it from
saving false data.

70

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Properties are of two kinds:
1. Full Property
2. Auto Property

Full Property
In full property, we declare private fields and encapsulate them inside a property’s definition.

Syntax

private Type field name;
Access_Specifier Type Property Name

{
get { return field_name;}
set { field name = value;}
}
e get property accessors used to return the value of a field.
e set property accessors used to set a value in a field.
e value is a keyword that is used to assign a value to a field.
Code Snippet

Listing 3-6. Define and use full property
class Student

{
private int age;
public int Age
{
get { return this.age; }
set { this.age = value; }
}
}
class Program
{
static void Main(string[] args)
{
Student std = new Student();
std.Age = 10;
}
}

71

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Note We can make a full property a read-only property by two ways. Remove set{} block from full
property’s definition, or mark set block with a private access specifier. A read-only property is used to return the
value of a field and a user cannot set its value from outside the class.

Auto Property

Auto property is a lot like full property. The only key difference is, it doesn’t require any field or extra logic in
its get and set to manipulate values, because a compiler creates its own private field automatically. It’s just a
syntactic sugar that C# gives to its developers.

Syntax
Access_Specifier Type Property_Name { get; set; }
Code Snippet

Listing 3-7. Define and use auto property

class Student

{
public int Age { get; set; }
}
class Program
{
static void Main(string[] args)
{
Student std = new Student();
std.Age = 10;
}
}

Note We can make an auto property a read-only property by two ways. Remove set{} block from auto
property definition, or make set block private.

Indexers

Indexers are used to encapsulate the value of an array. It behaves and works like property. It also uses access
specifiers, which give better control to read, write, or manipulate an array’s value. It creates a sandbox over
an array, which protects it from:

1. saving false data in an array;
2. using the wrong index value in an array;

3. changing the reference of an array from the outer world.

72

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Syntax

Access_Specifier Type this[int index]

{
get { /* return the value of specified index of array here */ }
set { /* set the specified index to value here */ }

}

e Type defines the type of an array, i.e., (int[], object(]..)

o this defines an object’s primary array.

e [intindex] defines the index of an array; however, C# doesn’t limit the type of index
with integer. For example, we can use string as a type of index, which would be
helpful to search a specific data from a collection (dictionary < string, object>).

Code Snippet

Listing 3-8. Define indexer

class Temprature

{
//declare private array of float type.
private float[] weekTemp =
{ 47.5F, 40.0F, 52.5F, 45.5F, 48.0F, 38.0F, 35.7F };
//use float indexer, to encapsulate weekTemp
public float this[int index]
{
get
{
return weekTemp[index];
}
set
{
weekTemp[index] = value;
}
}
}

Listing 3-9. Use indexer inside Main method

class Program

{
static void Main(string[] args)
{
Temprature temp = new Temprature();
float todayTemp = temp[1]; //read
temp[1] = -5.0F; //Write
}
}

73

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Remember, we use indexer by calling the object name along with an array index, as in this case
“temp[1]’, which says get me the value of 1 index that the temp’s indexer has encapsulated.

Note In a class there should be only one indexer. However, you can overload a single indexer multiple
times.

Validate Indexer Data

Data can be validated when it has been set or gotten by using if-else statements. For example, we can check
if a value is greater than 0; then it can be set into memory. Similarly, we can check if the index value must be
less than its array length and greater than or equal to 0.

Listing 3-10. Validate values of indexer
private float[] weekTemp =
{ 47.5F, 40.0F, 52.5F, 45.5F, 48.0F, 38.0F, 35.7F };

//use float indexer, to encapsulate weekTemp
public float this[int index]

{
get
{
if (index >= 0 8% < weekTemp.Length)
{
return weekTemp[index];
}
else
{
return 0;
}
}
set
if (value > 0)
{
weekTemp[index] = value;
}
else
{
Console.WriteLine("Please set value greater than 0");
}
}
}

Note You can validate index data and its value inside a get and set block with a simple if-else
statement.

74

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Inheritance

Inheritance is one of the three fundamental pillars of object-oriented programming. It allows new classes to
reuse or inherit properties and methods from an existing class.

The class whose members are inherited is called base class and the class which inherited those
members is called derived class (Figure 3-1).

Inheritance

A

Base Class + property: type

+ method(type): type

A

B

+ property: type
Derived Class property: typ

+ method(type): type

Figure 3-1. Inheritance

Syntax
Access_Specifier BaseClassName
{
//T0D0: Base class code
}
Access_Specifier DerivedClassName : BaseClassName
{
//TODO: Derived class code
}
Code Snippet

Listing 3-11. Inherit Parent class in Child class

class Parent

{
public string SurName { get; set; }
}
class Child : Parent
{

private string _name;

75

CHAPTER 3 © GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

public string Name
{

get

{

return (_name + + base.SurName);

Name = value;

Note In C#, a class cannot inherit from multiple classes, but it can be inherited at mulitple levels.

Multi Level Inheritance

When a class is derived from a derived class it’s called multi-level inheritance.

Multi- level inheritance

A
Grand Parent Base Class
A
B
Parent .
Intermediate
T Base Class
C
Child Derived Class

Figure 3-2. Multi-level inheritance

Code Snippet

Listing 3-12. Use multi-level inheritance

class GrandParent

{
public GrandParent()

{
76

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Console.WriteLine("Grand Parent");

}
}
class Parent : GrandParent
{
public Parent()
{
Console.WritelLine("Parent");
}
}
class Child : Parent
{
public Child()
Console.WriteLine("Child");
}
}
class Program
{
static void Main(string[] args)
{
Child child = new Child();
}
}
Output
Grand Parent
Parent
Child

In the above code snippet, Child class has inherited from Parent class and the same Parent class has
inherited from GrandParent class. This is called multi-level inheritance.

Remember, in inheritance while creating an object of a derived class, the compiler always executes its
base/parent class’s constructor first and then executes its child class’s constructor. If the same parent class
has inherited from another class, that class’s constructor will execute first and then it will come down to its
child and grandchild level to execute their constructor one after the other.

Note A class cannot inherit multiple classes but it can implement multiple interfaces at the same time.

Abstract Class

Abstract classes cannot be instantiated. It is used as base class, where it provides common members to all
its derived classes. It is either overridden partially or not at all. It is also used to declare abstract methods
(method without definition) that when it inherits, it must be overridden by its derived classes.

7

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Syntax

abstract class Class_Name

{
}

//TODO: Code

Code Snippet

Listing 3-13. Define and use abstract class

abstract class Vehicle

{
protected int wheels;
public int Wheels
{
get { return wheels; }
}
}
class Bike : Vehicle
{
public Bike()
{
base.wheels = 2;
}
}
class Program
{
static void Main(string[] args)
{
Vehicle vehicle = new Bike();
Console.WritelLine(vehicle.Wheels);
}
}

Note Vehicle class cannot be instantiated but it can store reference to its child object Bike. This is called
polymorphism. You’ll learn more on polymorphism and abstract methods in coming topics.

Interface

Interface cannot be instantiated. Its members have no implementation detail. All implementation detail is
defined by classes which implement (inherit) interfaces. Interface provides the highest level of abstraction.

78

CHAPTER 3

Syntax

interface IName

{
//T0DO:

}

In C#, class can implement interface by two ways:
1. Implement interface implicitly

2. Implement interface explicitly

Implement interface implicitly

GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Implicit interfaces are implemented publicly. It is implemented when explicit definition of each interface’s

members isn’t required.

Code Snippet

Listing 3-14. Define and use interface

interface IVehicle

{
int Wheels { get; }
}
class Bike : IVehicle
{
private int wheels;
public int Wheels
{
get
{
return wheels;
}
}
}
class Program
{
static void Main(string[] args)
{
IVehicle vehicle = new Bike();
Console.WritelLine(vehicle.Wheels);
}
}

79

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Key Points
1. Do not use access specifiers with interface’s members.
2. Do not define definition of interface members.

3. Auto-property, indexer, method, and event can be used as a member of an
interface.

4. Class must implement full definition of interface’s members. Otherwise error
may occur at compile/run time.

5. Class can implement more than one interface.

Implement interface explicitly

Explicit interfaces are implemented privately. We implement them explicitly when a separate definition of
each interface’s member is required. For example, when a class implements more than one interface which
share a common member’s name, explicit implementation of interface is required to separate the definition
of each member.

Code Snippet

Listing 3-15. Define and use explicit implimentation of interfaces

interface IEnglish

{
int Marks { get; }
}
interface IMath
{
int Marks { get; }
}
class Student : IEnglish, IMath
{
int english = 10;
int math = 9;
int IMath.Marks
{
get
{
return english;
}
}
int IEnglish.Marks
{
get

80

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

{
return math;
}
}
}
class Program
{
static void Main(string[] args)
{
Student std = new Student();
int english = ((IEnglish)std).Marks;
int math = ((IMath)std).Marks;
Console.WriteLine("English Marks = {0} Math Marks = {1}",
english, math);
}
}
Explanation

1. IMath.Marks used to implement interface explicitly by defining name of writing
name of interface before member name.

2. No Access specifier used to implement explicit interfaces.

3. ((IEnglish)std).Marks; used to access “Marks” property of “IEnglish” interface.

Polymorphism

Polymorphism is all about changing behaviors; in other words, it is different forms of one object.
In C#, polymorphism is of two types:

1. Static Polymorphism

2. Dynamic Polymorphism

Static Polymorphism

Polymorphism in programming is all about changing behavior. While static polymorphism means changing
behavior of methods at compile time, it is also known as early binding.
In C#, static polymorphism can be implemented with two ways:

1. Method Overloading

2. Operator Overloading

Method Overloading

Inside type (class, struct) definition we can have multiple methods of the same name but with different
parameters; this is called method overloading.

81

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

In C#, we can overload a method by two ways:
1. By parameter types

2. Bylength of parameters

Overload Method by Parameter Type

A method can be overloaded by defining different parameter types for each method which share the same
method’s name.

For Example

In the following code snippet, we have “Add” method, overloaded by defining different parameter types.

Listing 3-16. Define method overloading by parameter type

class Calculator

{
public void Add(int a, int b)
{
int result = a + b;
Console.WritelLine("Sum of ints = {0}",result);
}
public void Add(string a, string b)
{
string result = a + b;
Console.WriteLine("Sum of strings = {0}", result);
}
}
class Program
{
static void Main(string[] args)
{
Calculator cal = new Calculator();
cal.Add(1, 2);
cal.Add("C", "Sharp");
}
}
//0utput

Sum of ints = 3
Sum of strings = CSharp
Explanation

e cal.Add(1, 2); when it is called, control will go and execute an overloaded Add
method, which has two int parameters.

e cal.Add(“C’ “Sharp”); when it is called, control will go to an overloaded Add
method which has two string parameters

82

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Overload Method by length of parameter

A method can be overloaded by defining a different parameter length for each method which shares the
same method’s name.

For Example

In the following code snippet, we have “Show” method overloaded by a different parameter length.

Listing 3-17. Define method overloading by parameter length

class Program

{
public void Show(string name)
{
Console.WriteLine("Name = {0}", name);
}
public void Show(string name, int age)
{
Console.WriteLine("Name = {0} - Age = {1}", name, age);
}
static void Main(string[] args)
{
Program program = new Program();
program.Show("Ali");
program.Show("Ali", 22);
}
}
//0utput
Name = Ali

Name = Ali - Age = 22

Explanation

e program.Show(“Ali”); when it is called, control will go and execute an overloaded
Show method, which has a single parameter of string type.

e program.Show(“Ali’) 22); when it is called, control will go and execute an
overloaded Show method, which has two parameters of string and int type.

Note Methods with the same name but different return types aren’t considered overloaded.

Operator Overloading

In C#, we can overload the definition of an operator for custom types (class, struct). To overload the
definition of an operator, we define special methods inside a custom type. These methods help the compiler
to distinguish among different meanings of an operator that produce different results for a different type.

83

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Generally, in C# we can overload three kinds of operators:
1. Unary Operators
2. Binary Operators

3. Comparison Operators

Overload Unary Operators

Unary operator operates on a single operand (+, -, !, ++, --, true, false). These are unary operators which can
be overloaded in C#.

Syntax
public static return type operator op (Type t)
{
// T0DO:
}
e Static operator overloaded method must be static.
e operator is a keyword used to define an operator overloaded method.
e opuse special operator symbol, describe which operator definition is going to be
overloaded, i.e., (+, -, ..).
e Typewhere type must be struct or class.
Code Snippet

Listing 3-18. Define and use unary operator overloading

class Distance

{
public int meter { get; set; }
public static Distance operator ++ (Distance dis)
{
dis.meter += 1;
return dis;
}
}
class Program
{
static void Main(string[] args)
{
Distance distance = new Distance();
distance.meter = 5;
distance++;
Console.Writeline(distance.meter);
}
}

84

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Explanation

distance++; it’s called operator ++ method; it passed its own object to operator ++ parameter.

Overload Binary Operator

Binary operator operates on two operands (+, -, *, /, %, &, |, /\, <<, >>). These are Binary operators which can
be overloaded in C#.

Syntax

public static return type operator op (Typel ti, Type2 t2)
{

}

//T0ODO:

e Typetl isleft side operand
e Typet2isright side operand

Code Snippet

Listing 3-19. Define and use binary operator overloading

class Student

{
public int Marks { get; set; }
// + Operator Overloading Method

public static Student operator + (Student si, Student s2)

{
Student std = new Student();
std.Marks = si1.Marks + s2.Marks;
return std;
}
}
class Program
{
static void Main(string[] args)
{
Student s1 = new Student { Marks = 10 };
Student s2 = new Student { Marks = 20 };
Student s3 = s1 + s2;
Console.Writeline(s3.Marks);
}
}
//0utput
30

85

https://msdn.microsoft.com/en-us/library/k1a63xkz.aspx
https://msdn.microsoft.com/en-us/library/wch5w409.aspx
https://msdn.microsoft.com/en-us/library/z19tbbca.aspx
https://msdn.microsoft.com/en-us/library/3b1ff23f.aspx
https://msdn.microsoft.com/en-us/library/0w4e0fzs.aspx
https://msdn.microsoft.com/en-us/library/kxszd0kx.aspx
https://msdn.microsoft.com/en-us/library/zkacc7k1.aspx
https://msdn.microsoft.com/en-us/library/a1sway8w.aspx
https://msdn.microsoft.com/en-us/library/xt18et0d.aspx

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Explanation

Student s3 = s1 + s2; when it is called, operator + method will get executed, which takes s1 and s2 for its
parameter values.

Overload Comparison Operator

Comparison operator operates on two operands and returns Boolean value when it compares left-sided
operand’s value with right-sided operand’s value (==, !=, <, >, <=, >=). These are comparison operators which
can be overloaded in C#.

Syntax

public static bool operator op (Typel t1, Type2 t2)
{

}
Code Snippet

//T0ODO:

Listing 3-20. Define and use comparison operator

class Distance

{
public int meter { get; set; }
public static bool operator < (Distance di, Distance d2)
{
return (di.meter < d2.meter);
}
public static bool operator > (Distance di, Distance d2)
{
return (di.meter > d2.meter);
}
}
class Program
{
static void Main(string[] args)
{
Distance di1 = new Distance { meter = 10 };
Distance d2 = new Distance { meter = 20 };
if(d1 < d2)
{
Console.Writeline("d1 is less than d2");
}
else if(d2 < d1)
{
Console.WriteLine("d2 is less than di");
}
}
}

86

https://msdn.microsoft.com/en-us/library/53k8ybth.aspx
https://msdn.microsoft.com/en-us/library/3tz250sf.aspx
https://msdn.microsoft.com/en-us/library/z5wecxwa.aspx
https://msdn.microsoft.com/en-us/library/yxk8751b.aspx
https://msdn.microsoft.com/en-us/library/hx063734.aspx
https://msdn.microsoft.com/en-us/library/a59bsyk4.aspx

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Explanation

if(d1 < d2): When this code is executed, operator < method will get executed, which takes di
and d2 as its parameter. It returns true if di's meter value is less than d2's meter value.

Note Always overload opposite operator of comparison operator. For example, whenever we overload less
than operator we must overload greater than operator as well. The same applies to ==, != operator.

Dynamic Polymorphism

Polymorphism in programming is all about changing behavior, while dynamic polymorphism means
changing behavior of an object at runtime by overriding the definition of a method. It is also known as late
binding.

In C#, method is overridden by two ways:

1. Virtual method

2. Abstract method

Virtual Method

Virtual is a keyword used with method in base class to define a virtual method. Virtual method has a
definition of its method; its derived class can inherit or override its definition. Thus, when calling the
method name the runtime will determine which method to invoke.

Syntax

virtual return_type methodName()

{
}

//T0ODO:

Code Snippet

Listing 3-21. Define virtual method

class Vehicle

{
public virtual void Run()
{
Console.WriteLine("Run Vehicle");
}
}

87

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Listing 3-22. Override virtual method

class Bike : Vehicle

{
public override void Run()
{
Console.WritelLine("Bike Run");
}
}
class Program
{
static void Main(string[] args)
{
Vehicle vc = new Bike();
vc.Run();
}
}
Output
Bike Run
Explanation

1. public virtual void Run(){..} define a virtual method in base class.

2. public override void Run(){..} override Run method in derived class by defining
its own implementation of Run() method.

3. Vehicle vc = new Bike(); vc holds object of its child class “Bike”.

4. vc.Run(); control will first move to base “Run” method. When runtime is
encountered, it’s a virtual method; it will then move to its derived class “Bike”
definition to find implementation of “Run()” method. If it finds the method it will
invoke it; otherwise it will come back to base class to run virtual Run() method.

Abstract method

abstract is a keyword used with method in abstract class to declare an abstract method. Unlike virtual
method, abstract method doesn’t have its definition of method. Thus, its derived class must implement the
definition of abstract method, otherwise compile time error will generate. Abstract methods always declare

inside an abstract class.

Syntax

abstract class_Name

{
}

public abstract Type Method();

88

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Code Snippet

Listing 3-23. Define and override abstract method

abstract class Vehicle

public abstract void Run();

}
class Bike : Vehicle
{
public override void Run()
{
Console.WritelLine("Run Bike");
}
}
class Program
{
static void Main(string[] args)
{
Vehicle vc = new Bike();
vc.Run();
}
}
Explanation

1. public abstract void Run(); declare abstract method without implementing its
definition.

2. public override void Run(); override the definition of Run method in derived
class “Bike” Thus, when Run() method is called, the always derived method will
invoke.

Summary

e C#hasfive access specifiers, i.e., Public, Private, Protected, Internal, Internal
Protected.

e Properties and Indexers both are used to encapsulate data.

e Derived class can inherit all data from its base class, except one which is mentioned
with private access specifier.

e C#doesn’t allow multiple inheritance, but it allows multi-level inheritance.

e Aclass mustimplement all members of an interface and all abstract methods of an
abstract class.

e Abstract method can only be written inside of an abstract class.

89

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Code Challenges

Challenge 1: Develop a Transformer

We all have watched the Transformers film. They're intelligent vehicles which can transform into jets,
cars and boats. Your job is to make an application where a transformer could change its behavior into the
following vehicles.

Vehicle Condition to transform Attributes

Jet When transformer is on air Wheels =8
Max Speed = 900

Car When transformer is on road Wheels =4
Max Speed = 350

Boat When transformer is on water Wheels =0
Max Speed =200

Your job is to implement a Run method for each vehicle that transformer runs whenever the landscape
changes.

Tip
1. Use Enum to store landscape, i.e., air, road, water.

2. Follow OOP principle of Polymorphism.

Challenge 2: Develop Steve Jobs Laundry System

Steve Jobs described OOP in a very simple example. Your job is to use that example to develop an
application that uses Object Oriented Principle. The example that Steve Jobs gave us is given below:

IfI'm your laundry object, you can give me your dirty clothes and send me a message that
says, “Can you get my clothes laundered, please.” I happen to know where the best laundry
place in San Francisco is. And I speak English, and I have dollars in my pockets. So, I go
out and hail a taxicab and tell the driver to take me to this place in San Francisco. I go get
your clothes laundered, I jump back in the cab, I get back here. I give you your clean clothes
and say, “Here are your clean clothes.”

90

http://www.imdb.com/title/tt0418279/

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Practice Exam Questions

Question 1

Suppose you are developing an application that includes the following code segment:
interface ICricket
void Play();
interface IFootball
{
}

void Play();

You need to implement both Play() methods in a derived class named Player that uses the Play()
method of each interface.
Which two code segments should you use?

A)
class Player : ICricket, IFootball
{
void ICricket.Play()
{
//TODO:
}
void IFootball.Play()
{
//T0DO:
}
}
B)

Player player = new Player();
((ICricket)player).Play();
((IFootball)player).Play();

9
Player player = new Player();
player.Play();

D)

Player player = new Player();
player.Play(ICricket);
player.Play(IFootball);

91

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

E)
class Player : ICricket, IFootball
{
public void ICricket.Play()
{
//T0ODO:
}
public void IFootball.Play()
{
//T0ODO:
}
}
Question 2

Suppose you are developing an application. The application has two classes named Player and Person.
The Player class must meet the following requirements:

1. It mustinherit from the Person class.
2. Itmust not be inheritable by other classes in the application.

Which code segment should you use?

A)
sealed class Player : Person

{
}
B)

abstract class Player : Person

{
//T0DO:

}

0)
private class Player : Person

{
//T0D0:

}

D)
partial class Player : Person

{
//T0D0:

}

//T0DO:

92

CHAPTER 3 * GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Question 3

Suppose you're creating a class named Player. The class exposes a string property named HitSpeed. Here is
the code snippet of Player class.

01. class Player

02. {

03. public int HitSpeed

04. {

05. get;

06. set;

07. }

08. }

The HitSpeed property must meet the following requirements:

1. Thevalue must be accessed by code within the Player class.
2. The value must be accessed to derived classes of Player.

3. The value must be modified only by code within the Player class.

You need to ensure that the implementation of the EmployeeType property meets the requirements.
Which code segment you should replace at line 05. And 06.?

A) Replace line 05. with “public get;”
Replace Line 06. With “private set;”.
B) Replace line 05. with “protected get;".
Replace Line 06. With “private set;”.
C) Replace line 05. with “internal get;”
Replace Line 06. With “internal protected set;”.
D) Replace line 05. with “internal protected get;”.

Replace Line 06. With “internal set;”.

Question 4

Is the following method “Display” considered to be overloaded?

class Person

{
public void Display()
{
//
}
public int Display()
{
//
}
}
A) Yes.
B) No.

93

CHAPTER 3 ' GETTING STARTED WITH OBJECT ORIENTED PROGRAMMING

Question 5

How do you encapsulate an array of integers into an indexer?
You must choose the right code segment.

A)
private int[] array;
public int this[int index]

{
get { return array[index]; }
set { array[index] = value; }
}
B)

private int[] array;
public int this(int index)

{
get { return array[index]; }
set { array[index] = value; }
}
0)

private int[] array;
public int[] this[int index]

{

get { return array; }

set { array[index] = value; }
}
D)

private int[] array;
private int index;

public int this

{ get { return array[index]; }
set { array[index] = value; }

}
Answers

1. AB

2. A

3. B

4. B

5 A

94

CHAPTER 4

Advance C#

C# is a very rich language that provides too much sugar code that developers can take leverage from. In this
chapter, we’ll look into some of the most popular features of C#, such as:

1. Boxing/Unboxing
Generics
Collection

Framework Interfaces

e &~ w0 N

Manipulating Strings

Boxing and Unboxing

Boxing and unboxing are important concepts in a C# type’s system. They were introduced in C# 1 when
there was no defined concept for generalization of types.

Boxing

Boxing refers to implicit conversion of a value type into an object type, or to any interface that it implements,
e.g., int to IComparable<int>. Further, the conversion of an underlying value type to a nullable type is also
known as boxing.

During boxing, value type is being allocated on a managed heap rather than a Stack.

Syntax
object boxedVariable = valueType variable;
Code Snippet

Listing 4-1. Boxed int value

int age = 22;

object boxedAge = age; //Boxing
Explanation

In the above example (Listing 4-1), the integer value age is boxed and assigned to object boxedAge.

© Ali Asad and Hamza Ali 2017 95
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_4

CHAPTER 4 © ADVANCE C#

Stack Heap

int

22

boxedAge /

age

22

Figure 4-1. Boxing

Unboxing

Unboxing refers to an explicit conversion of object type to non-nullable-value type or the conversion of an
interface type to a non-nullable-value type, e.g., IComparable<int> to int. Further, the conversion of nullable
type to the underlying value type is also known as unboxing.

During unboxing, boxed value is unboxed from the managed heap to a value type which is being
allocated on a Stack.

Syntax
valueType unboxedVariable = (valueType)boxedVariable;
Code Snippet

Listing 4-2. Unboxed, boxed value

int age = 22;

object boxedAge = age; //Boxing
int unboxedAge = (int)boxedAge; //Unboxing

Explanation

In the above example (Listing 4-2), the boxed value object boxedAge is being unboxed into int unboxedAge.
During unboxing, CLR does the following operation:

e Check the boxed value is of the given value type.

e Assign avalue to a value type variable from the boxed value.

96

CHAPTER 4 © ADVANCE C#

Stack Heap
int
unboxedAge
-) / -
boxedAge /
age
22

Figure 4-2. Unboxing

Performance of Boxing & Unboxing

Boxing and Unboxing are very expensive in terms of computation operations for a processor. Therefore,
itis best to avoid using value types where they must be boxed and unboxed many times, for example, in
ArrayList (ArrayList stores everything as a collection of objects). When a value is boxed, a new instance
must be created in heap. This could take up to 20 times longer than a simple reference assignment. When a
boxed value is unboxed, it takes 4 times longer than a simple reference assignment. Therefore, it is always
preferable to use generics over boxing and unboxing.

Generics

Generics were introduced in C# 2. It gave the concept of type-safe. Generics defines a class in a way that its
fields, methods, parameters, etc., can be able to work with any actual data-type. It performs compile-time
checks for type safety and it is much faster than boxing/unboxing for type generalization.

Syntax

class ClassName <T>

{
}

//T0DO:

e Generic class: define by using “<>" angle brackets.

e Tisa generic type parameter; refers to any compile-time type that is given when a
class is instantiated.

¢ Inthe same way, we can define generic structs and generic interfaces, too.

97

CHAPTER 4 © ADVANCE C#

Code Snippet

Listing 4-3. Define and use generic class

class GenericClass<T>

{
//type 'T' will define at the instantiation of GenericClass
private T genericField;

public T GenericMethod(T genericParameter)
{
this.genericField = genericParameter;
return this.genericField;

}

public T GenericProperty { get; set; }

}

class Program
{
static void Main(string[] args)
{
//Here <T> type become string
GenericClass<string> genStr = new GenericClass<string>();
string strData = genStr.GenericMethod("C#");
genStr.GenericProperty = "Certification Exam: ";
Console.WriteLine("{0} {1}", strData, genStr.CGenericProperty);

//Here <T> type become int

GenericClass<int> genInt = new GenericClass<int>();

int intData = genInt.GenericMethod(70);

genInt.GenericProperty = 483;

Console.WriteLine("{0} - {1}",intData, genInt.GenericProperty);

}

//0utput
C# Certification Exam:
70 - 483

Note You can create more than one generic type paramter inside <> angle brackets i.e., <T, M>.

Constraints on Generic Type Parameters

Constraints on generic type parameters are useful to restrict the kinds of types that can be used for type
arguments to instantiate a generic class. Compile time error will generate if client code tries to instantiate a
generic class by using a type that is restricted for type parameter.

98

CHAPTER 4 © ADVANCE C#
where keyword is used to apply constraints on generic type parameters.
Syntax

class ClassName<T> where T: specifyConstraint

{
}

Kind of Constraints

//T0ODO:

There are 6 kinds of constraints that we can apply on generic type parameters. The following table
(Table 4-1) lists the kinds of constraints.

Table 4-1. List of constraints for generic type parameters

Constraints Explanation

where T : struct Type “T” must be a value type

where T : class Type “T” must be a reference type

where T : new() Type “T” must has a definition of public default constructor
where T: U Type “T” must be or child of type “U”

where T : interfaceName Type “T” must be or implement a specified interface

Code Snippet

Listing 4-4. Constraint “where T: struct”

class GenericClass<T> where T: struct

{
//Where T: struct says, 'T' can only be a value type.
private T genericField;
public T GenericMethod(T genericParameter)
{
this.genericField = genericParameter;
return this.genericField;
}
public T GenericProperty { get; set; }
}
class Program
{

static void Main(string[] args)

{

99

CHAPTER 4 © ADVANCE C#

//Here <T> type become int which is a value type
GenericClass<int> genInt = new GenericClass<int>();

int intData = genInt.GenericMethod(70);

genInt.GenericProperty = 483;

Console.WriteLine("{0} - {1}",intData, genInt.GenericProperty);

Listing 4-5. Constraint “where T: class”

class GenericClass<T> where T: class

{
//type 'T' will be a reference type

private T genericField;

public T GenericMethod(T genericParameter)

{

this.genericField = genericParameter;
return this.genericField;

}

public T GenericProperty { get; set; }

}

class Program
{
static void Main(string[] args)
{
//Here <T> type become string. Which is a reference type
GenericClass<string> genStr = new GenericClass<string>();
string strData = genStr.GenericMethod("C#");
genStr.GenericProperty = "Certification Exam: ";
Console.WriteLine("{0} {1}", strData, genStr.GenericProperty);

Listing 4-6. Constraint “where T: new()”

class MyClass

{
//Public Default Constructor
public MyClass()
{
}
}

100

class GenericClass<T> where T : new()

{
//TODO:
}
class Program
{
static void Main(string[] args)
{
//Here 'T' is Myclass. Which has public default constructor
GenericClass<MyClass> genMC = new GenericClass<MyClass>();
}
}

Listing 4-7. Constraint “where T: BaseClass”

class Person

{
}
class Student : Person
{
}
class GenericClass<T> where T : Person
{
//T0D0:
}
class Program
{
static void Main(string[] args)
{
GenericClass<Person> genPer = new GenericClass<Person>();
//Student is also a Person. This is also valid.
GenericClass<Student> genStd = new GenericClass<Student>();
}
}

CHAPTER 4 © ADVANCE C#

101

CHAPTER 4 © ADVANCE C#

Listing 4-8. Constraint “where T: interfaceName” interface [Person

{
}
class Person : IPerson
{
//Implement Iperson
}
class Student : Person
{
//70DO0:
}
class GenericClass<T> where T : IPerson
{
//70DO0:
}
class Program
{
static void Main(string[] args)
{
//Here 'T' is IPerson
GenericClass<IPerson> genIPer = new GenericClass<IPerson>();
//Here 'T' is Person which has implement 'IPerson’
GenericClass<Person> genPer = new GenericClass<Person>();
//Here 'T' is Student it inherit 'Person’ which implement 'IPerson’.
GenericClass<Student> genStd = new GenericClass<Student>();
}
}

Listing 4-9. Constraint “where T: U”

class Person

{
//TODO
}
class Student : Person
{
//
}
class GenericClass<T, U> where T : U
{
//T0DO
}

102

CHAPTER 4

class Program

{
static void Main(string[] args)
{
//Here 'T' and 'U' types are same
GenericClass<Person, Person> genPP =
new GenericClass<Person, Person>();
//Here 'T' inherit 'U' type
GenericClass<Student, Person> genSP =
new GenericClass<Student, Person>();
}
}

Similarly, we can apply more than one constraint on type arguments.

Listing 4-10. Constraint “where T: BaseClass, new()”

class Person

{
public string Name { get; set; }
public Person()
{
this.Name = "default";
}
}
class Student : Person
{
//T0DO:
}
class GenericClass<T> where T : Person, new()
{
//Where T can only be Person which has a default constructor
//T0DO:
}
class Program
{
static void Main(string[] args)
{
GenericClass<Person> genPer = new GenericClass<Person>();
//Student is also a Person. This is also valid.
GenericClass<Student> genStd = new GenericClass<Student>();
}
}

ADVANCE C#

103

CHAPTER 4 © ADVANCE C#

Generic Methods

Generic methods help to type-safe a method’s argument type, which helps in calling a method’s parameter
for multiple types.

Syntax

returnType methodName <T>(T arg)
{

}

//T0ODO:

e Generic method defines by using “<>" angle brackets.

e Tisageneric type parameter; it refers to any compile-time type that is given when
the generic method is called.

Code Snippet

Listing 4-11. Use generic methods

class Example

{
public void GenericMethodArgs<T> (T first)
{
Console.WritelLine(first);
}
public T ReturnFromGenericMethodArgs<T> (T first)
{
return first;
public void MultipleGenericMethodArgs<T, U>(T first, U second)
{
Console.WriteLine("{0}: {1}", first, second);
}
public U ReturnFromMultipleGenericMethodArgs<T, U>(T first)
{
U temp = default(U);
return temp;
}
}
class Program
{

static void Main(string[] args)

{

Example ex = new Example();

104

}

CHAPTER 4

//Call generic method which has single generic type
ex.GenericMethodArgs<int>(10);

int FromSingle = ex.ReturnFromGenericMethodArgs<int>(10);
Console.WriteLine(FromSingle + "\n");

//Call generic method which has multiple generic type
ex.MultipleGenericMethodArgs<string, int>("Exam", 70483);
int FromMultiple =

ex.ReturnFromMultipleGenericMethodArgs<string, int>("Exam: ");
Console.WriteLine(FromMultiple);

//0utput

10
10

Exam:

0

70483

Constraints on Generic Methods

ADVANCE C#

Constraints can also be applied on generic methods to restrict the kinds of types used to pass values during
method calling.

Listing 4-12. Constraint on generic method

class Example

{
public void GenericMethod<T> (T arg) where T: struct
{
//TODO:
Console.WriteLine(arg);
}
}
class Program
{
static void Main(string[] args)
{
Example ex = new Example();
ex.GenericMethod<int>(5);
//without <> calling generic method.
ex.GenericMethod(10);
}
}
//0utput
5
10

105

CHAPTER 4 © ADVANCE C#

e Generic method can also be called without <> angle brackets. Types of generic
arguments depend upong the type of passing values in a generic method’s
parameter.

Note Generics can also be used to define generic delegates and events, which we’ll cover in the next
chapter.

Collection

Collection helps to manage a group of related objects. In C#, collections are data structures that provide a
flexible way to store and retrieve objects dynamically. Unlike arrays, a group of objects in a collection can
grow and shrink anytime.

Collections are classes that instantiated to manage a group of related objects. In C#, there are three kind
of collections:

1. System.Collections
2. System.Collections.Generic

3. System.Collections.Concurrent

System.Collections

System.Collections is a namespace which contains classes and interfaces that manages a group of data.
It stores each data in the form of a system.object type. Therefore, a group of value type data always gets
boxed/unboxed. It defines multiple data structures to store and retrieve data such as list, queue, and
hashtable.

Table 4-2. Frequently used classes in system.collections namespace

Class Explanation

ArrayList Array of objects whose size can grow and shrink dynamically
Hashtable Collection of key/value pair, organize on base of hash code
Queue Manages group of data in First In, First Out (FIFO) order
Stack Manages group of data in Last In, First Out (LIFO) order

ArrayList

It’s an array of objects which can grow and shrink its size dynamically. Unlike arrays, an ArrayList can hold
data of multiple data types. It can be accessed by its index. Inserting and deleting an element at the middle
of an ArrayList is more costly than inserting or deleting an element at the end an ArrayList.

An ArrayList contains many methods and properties that help to manage a group of objects. The
following is a list of some frequently used properties and methods defined in an ArrayList.

106

CHAPTER 4

Table 4-3. Frequently used methods and properties of ArrayList

ADVANCE C#

Method and Property Explanation

Add() Add an object to the end of ArrayList

Contains() Return true if specific object is in ArrayList

Clone() Create a shallow copy of ArrayList

Remove() Remove the first occurance of specific object in ArrayList
RemoveAt() Remove the object from specific index of ArrayList
Clear() Remove all objects from the ArrayList

Count Get the actual number of objects stored in ArrayList
Capacity Get or Set number of objects that ArrayList can contain
Code Snippet

Listing 4-13. Use ArrayList to manage a group of objects

using System.Collections;

class Program

{

static void Main(string[] args)

{

Arraylist arraylist = new ArraylList();

//add objects in arraylist
arraylist.Add(22);
arraylist.Add("Ali");
arraylist.Add(true);

//Iterate over each index of arraylist
for (int i = 0; i < arraylist.Count; i++)

{
}

System.Console.Writeline(arraylist[i]);

arraylist.Remove(22);
System.Console.WritelLine();
foreach (var item in arraylist)

{
}

System.Console.WritelLine(item);

107

CHAPTER 4 © ADVANCE C#

//0utput
22

Ali

True

Ali
True

Hashtable

Hashtable stores each element of a collection in a pair of key/values. It optimizes the lookups by computing
the hash key and stores it to access the value against it.
Below are some common methods and properties used in a Hashtable class.

Table 4-4. Frequently used methods and properties of Hashtable

Method and Property Explanation

Add() Add an element with the specified key and value
ContainsKey() Return true if specific key is in Hashtable

ContainsValue Return true if specific value is in Hashtable

Clone() Create a shallow copy of Hashtable

Remove() Remove the element with the specified key from ArrayList
Clear() Remove all objects from the Hashtable

Count Get the actual number of key/value pairs in Hashtable
Keys Get list of keys contains in Hashtable

Values Get list of values contains in Hashtable

Code Snippet

Listing 4-14. Manage company and its owner info in Hashtable

using System.Collections;
using System;

class Program

{

static void Main(string[] args)
Hashtable owner = new Hashtable();

//Add some values in Hashtable

//There are no keys but value can be duplicate
owner.Add("Bill", "Microsoft");
owner.Add("Paul", "Microsoft");
owner.Add("Steve", "Apple");

owner.Add("Mark", "Facebook");

108

}

//0utput

Bill is

CHAPTER 4

//Display value against key
Console.WriteLine("Bill is the owner of {0}", owner["Bill"]);

//ContainsKey can be use to test key before inserting
if (lowner.ContainsKey("Trump"))

{
}

owner.Add("Trump", "The Trump Organization");

// When you use foreach to enumerate hash table elements,
// the elements are retrieved as KeyValuePair objects.
//DictionaryEntry is the pair of key & value
Console.WriteLine();

foreach (DictionaryEntry item in owner)

{
}

//Get All values stored in Hashtable
var allValues = owner.Values;
Console.WriteLine();

foreach (var item in allValues)

{
}

Console.WriteLine("{0} is owner of {1}", item.Key, item.Value);

Console.WritelLine("Company: {0}", item);

the owner of Microsoft

Steve is the owner of Apple
Trump is the owner of The Trump Organization

Mark is
Bill is
Paul is

Company:
Company:
Company:
Company:
Company:

Queue

the owner of Facebook
the owner of Microsoft
the owner of Microsoft

Apple

The Trump Organization
Facebook

Microsoft

Microsoft

ADVANCE C#

Queue is a class of System.Collections namespace. It stores and retrieves objects in FIFO (First In, First Out)
order. In other words, it manages a collection of objects on a first come, first served basis.

Below are some common methods and properties used in Queue class.

109

CHAPTER 4 © ADVANCE C#

Table 4-5. Frequently used methods and properties of Queue

Method and Property Explanation

Enqueue() Add an element to the end of the Queue

Dequeue() Remove and return the object at the beginning of the Queue

Peek() Return the object at the beginning of the queue without removing it
ToArray() Copy the Queue elements to a new array

Contains() Return true if a specified object is in the Queue

Clear() Remove all objects from the Queue

Clone() Create a shallow copy of the Queue

Count Get the actual number of objects in Queue

Code Snippet

Listing 4-15. Manage weekday’s name in a queue

using System.Collections;
using System;

class Program
{
static void Main(string[] args)

{

Queue days = new Queue();

//Add(Enque) objects in queus
days.Enqueue("Mon");
days.Enqueue("Tue");
days.Enqueue("Wed");
days.Enqueue("Thu");
days.Enqueue("Fri");
days.Enqueue("Sat");
days.Enqueue("Sun");

// Displays the properties and values of the Queue.
Console.WriteLine("Total elements in queue are {0}", days.Count);

//Remove and return first element of the queue
Console.WriteLine("{0}", days.Dequeue());

//return first element of queue without removing it from queue
//return 'Tue'
Console.WriteLine("{0}", days.Peek());

//Iterate over each element of queue
Console.WritelLine();

110

CHAPTER 4 © ADVANCE C#

foreach (var item in days)

{
}

Console.WritelLine(item);

}

//0utput

Total elements in queue are 7
Mon

Tue

Tue
Wed
Thu
Fri
Sat
Sun

Stack

Stack is a class of System.Collections namespace. It stores and retrieves objects in LIFO (Last In, First Out)
order. In other words, elements pushed at the end will pop first, for example, a pile of plates.
Below are some common methods and properties used in Stack class.

Table 4-6. Frequently used methods and properties of Stack

Method and Property Explanation

Push() Insert the object at the top of the Stack

Pop() Remove and return object at the top of the Stack

Peek() Return the object at the top of the Stack without removing it
ToArray() Copy the Stack elements to a new array

Contains() Return true if a specified object is in the Stack

Clear() Remove all objects from the Stack

Clone() Create a shallow copy of the Stack

Count Get the actual number of objects in Stack

Code Snippet

Listing 4-16. Manage browser history in Stack
using System.Collections;

using System;

class Program

{

static void Main(string[] args)

111

CHAPTER 4 © ADVANCE C#

Stack history = new Stack();

//Insert browser history in stack
history.Push("google.com");
history.Push("facebook.com/imaliasad");
history.Push("twitter.com/imaliasad");
history.Push("youtube.com");

// Displays the properties and values of the Stack.
Console.WriteLine("Total elements in stack are {0}", history.Count);

//Remove and return top element of the Stack
Console.WriteLine("{0}", history.Pop());

//return top element of Stack without removing it from Stack
//return 'twitter.com/imaliasad'
Console.WritelLine("{0}", history.Peek());

//Iterate over each element of Stack
Console.WriteLine();
foreach (var item in history)

{
}

Console.WriteLine(item);

}

//0utput

Total elements in stack are 4
youtube.com
twitter.com/imaliasad

twitter.com/imaliasad
facebook.com/imaliasad
google.com

System.Collections.Generics

System.Collections.Generics is a namespace which contains classes and interfaces to manage a
strongly-typed collection. In a generic collection, data cannot be boxed/unboxed because data always
gets type-safed. It is faster and better than classes and interfaces defined in System.Collections. It also
defines multiple data structures to store and retrieve data such as List<T>, Queue<T>, Stack<T>, and
Dictionary<TKey, TValue>.

112

CHAPTER 4 © ADVANCE C#

Table 4-7. Frequently used classes in System.Collections.Generic namespace

Class

Explanation

List<T>
Dictionary<Tkey,Tvalue>
Queue<T>

Stack<T>

List of type-safe objects that can dynamically grow & shrink
Represents collection of type-safe keys and values
Represents First In, First Out collection of type-safe objects

Represents Last In, First Out collection of type-safe objects

List<T>

List<T> is a type-safe collection of objects. List can grow and shrink its size dynamically. With generics
support, it can store a collection of any type in a type-safe way. Therefore, it is much faster and optimized

than ArrayList.

List<T> contains many methods and properties that help to manage a group of data. The following is list
of some frequently used properties and methods defined in List<T>.

Table 4-8. Frequently used methods and properties of List<T>

Method and Property Explanation

Add() Add an object to the end of the List<T>

Contains() Return true if specified object is in List<T>

Sort() Sort all the objects of List<T> by using comparer
Remove() Remove the first occurance of specific object in List<T>
RemoveAt() Remove the object from specified index of List<T>
Clear() Remove all objects from the List<T>

Find() Search the object by using specified predicate

Count Get the actual number of objects stored in List<T>
Code Snippet

Listing 4-17. Manage objects of multiple types in list<T>

using System.Collections.Generic;

using System;

class Person

{

public string Name { get; set; }
public int Age { get; set; }

}

class Program

113

CHAPTER 4 © ADVANCE C#

static void Main(string[] args)

{

List<Person> people = new List<Person>();

//Add Person in list

people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Hogi", Age = 12 });

//Get total number of person in list
Console.WritelLine("Total person are: {0}", people.Count);

//Iterate over each person
Console.WriteLine();
foreach (var person in people)

{
}

Console.WriteLine("Name: {0} - Age: {1}", person.Name, person.Age);

//Instantiate and populate list of int with values
List<int> marks = new List<int>
{
10,
25,
15,
23
b

//Remove '25' from the list
marks.Remove(25);

//Get each element by its index
Console.WriteLine();
Console.Write("Marks: ");

for (int i = 0; i < marks.Count; i++)

{
}

Console.Write(marks[i] + " ");

}

//0utput
Total persono are: 3

Name: Ali - Age: 22
Name: Sundus - Age: 21
Name: Hogi - Age: 12

Marks: 10 15 23

114

CHAPTER 4 © ADVANCE C#

Dictionary<TKey, TValue>

Dictionary<TKey, TValue> is a class of System.Collections.Generic. It’s a type-safe collection of key/
value pairs. Each key in dictionary must be unique and can store multiple values against the same key.
Dictionary<TKey, TValue> is much faster than Hashtable.

Below are some common methods and properties used in Dictionary<TKey, TValue> class.

Table 4-9. Frequently used methods and properties of Dictionary<Tkey, TValue> class

Method and Property Explanation

Add() Add pair of type-safe key/value in Dictionary.
ContainsKey() Return true if specific key is in Dictionary.

ContainsValue Return true if specific value is in Dictionary.

Clear() Remove all objects from the Dictionary.

Remove() Remove the element with the specified key in Dictionary.
Count Get the actual number of key/value pairs in Dictionary.
Keys Get list of keys contained in Dictionary.

Values Get list of values contained in Dictionary.

Code Snippet

Listing 4-18. Manage students in Dictionary

using System.Collections.Generic;
using System;

class Student

{
public string Name { get; set; }
public int Age { get; set; }

}

class Program

{

static void Main(string[] args)

{
//Initialize Dictionary (int for roll# and assign it to student)
Dictionary<int, Student> students = new Dictionary<int, Student>();

//Adding student against their roll#

students.Add(53, new Student { Name = "Ali Asad", Age = 22 });
students.Add(11, new Student { Name = "Sundus Naveed", Age = 21 });
students.Add(10, new Student { Name = "Hogi", Age = 12 });

//Display Name against key
Console.WritelLine("Roll# 11 is: {0}", students[11].Name);

115

CHAPTER 4 © ADVANCE C#

//ContainsKey can be use to test key before inserting
if (!students.ContainsKey(13))

{
}

// When you use foreach to enumerate elements of dictionary,

// the elements are retrieved as KeyValuePairPair object.
//KeyValuePair<TKey, TValue> is the pair of key & value for dictionary
Console.WriteLine();

foreach (KeyValuePair<int, Student> student in students)

students.Add(13, new Student { Name = "Lakhtey", Age = 21});

Console.WriteLine("Roll#: {0} - Name: {1} - Age: {2}",
student.Key, student.Value.Name, student.Value.Age);
}

//Get All values stored in Dictionary
var allValues = students.Values;
Console.WriteLine();
foreach (var student in allValues)
{
Console.WriteLine("Name: {0} - Age: {1}",
student.Name, student.Age);

}

//0utput
Roll# 11 is: Sundus Naveed

Roll# 53 - Name: Ali Asad - Age: 22
Roll# 11 - Name: Sundus Naveed - Age: 21
Roll# 10 - Name: Hogi - Age: 12

Roll# 13 - Name: Lakhtey - Age: 21

Name: Ali Asad - Age: 22
Name: Sundus Naveed - Age: 21
Name: Hogi - Age: 12

Name: Lakhtey - Age: 21

Queue<T>

Queue<T> is a type-safe class of System.Collections.Generic namespace. It stores and retrieves data in FIFO
(First In, First Out) order. In other words, it manages a collection of data on a first come, first served basis. It
is much faster than Queue defined in System.Collections because value-type gets boxed/unboxed in Queue,
whereas Queue<T> always type-safes it.

Below are some common methods and properties used in Queue<T> class.

116

CHAPTER 4 © ADVANCE C#

Table 4-10. Frequently used methods and properties of Queue<T>

Method and Property Explanation

Enqueue() Add an element to the end of the Queue<T>.

Dequeue() Remove and return an element at the beginning of the Queue<T>.

Peek() Return an element at the beginning of the Queue<T> without removing it.
ToArray() Copies the Queue<T> elements to a new array.

Contains() Return true if a specified element is in the Queue<T>.

Clear() Remove all elements from the Queue<T>.

Count Get the actual number of objects in Queue.

Code Snippet

Listing 4-19. Manage weekdays in Queue<string>

using Sy
using Sy

class Pr

{
stat

{

stem.Collections.Generic;
stem;

ogram
ic void Main(string[] args)
Queue<string> days = new Queue<string>();

//Add(Enque) string object in days
days.Enqueue("Mon");
days.Enqueue("Tue");
days.Enqueue("Wed");
days.Enqueue("Thu");
days.Enqueue("Fri");
days.Enqueue("Sat");
days.Enqueue("Sun");

// Displays the properties and values of the Queue.
Console.WriteLine("Total elements in queue<string> are {0}",
days.Count);

//Remove and return first element of the queue<string>
Console.WriteLine("{0}", days.Dequeue());

//return first element of queue without removing it from queue
//return 'Tue'
Console.WriteLine("{0}", days.Peek());

//Iterate over each element of queue

Console.WriteLine();
foreach (var item in days)

117

CHAPTER 4 © ADVANCE C#

Console.WritelLine(item);

}

//0utput

Total elements in queue<string> are 7
Mon

Tue

Tue
Wed
Thu
Fri
Sat
Sun

Stack<T>

Stack<T> is a class of System.Collections.Generic namespace. It stores and retrieves elements in LIFO (Last
In, First Out) order. In other words, elements pushed at the end will pop up first, for example, a pile of plates.
It is much faster than Stack defined in System.Collections because value-type gets boxed/unboxed in Stack,
whereas Stack<T> always type-safes it.

Below are some common methods and properties used in Stack<T> class.

Table 4-11. Frequently used methods and properties of Stack<T>

Method and Property Explanation

Push() Insert the element at the top of the Stack<T>.

Pop() Remove and return element at the top of the Stack<T>.

Peek() Return the element at the top of the Stack<T> without removing it.
ToArray() Copy the Stack<T> elements to a new array.

Contains() Return true if a specified element is in the Stack<T>.

Clear() Remove all elements from the Stack<T>.

Count Get the actual number of elements in Stack<T>.

118

CHAPTER 4

Code Snippet

Listing 4-20. Manage browser history in Stack<string>

using System.Collections.Generic;
using System;

class Program

static void Main(string[] args)

{

{

}
}
//0utput

Stack<string> history = new Stack<string>();

//Insert browser history in stack<string>
history.Push("google.com");
history.Push("facebook.com/imaliasad");
history.Push("twitter.com/imaliasad");
history.Push("youtube.com");

// Displays the properties and values of the Stack<string>.
Console.WriteLine("Total elements in stack<string> are {0}",
history.Count);

//Remove and return top element of the Stack<string>
Console.WriteLine("{0}", history.Pop());

//return top element of Stack<string> without removing it from Stack
//return 'twitter.com/imaliasad’
Console.WritelLine("{0}", history.Peek());

//Iterate over each element of Stack<string>
Console.WriteLine();
foreach (var item in history)

{
}

Console.WriteLine(item);

Total elements in stack<string> are 4
youtube.com
twitter.com/imaliasad

twitter.com/imaliasad
facebook.com/imaliasad
google.com

ADVANCE C#

119

CHAPTER 4 © ADVANCE C#

System.Collections.Concurrent

System.Collections.Concurrent namespace was introduced in .NET 4 framework. It provides several thread-
safe collections classes which protect a collection from being manipluated by multiple threads. Collection
classes that are defined in a System.Collections.Concurrent can only be manipulated by a single thread.
The .NET 4.0 Framework introduces several thread-safe collections in the System.Collections.Concurrent
namespace.

Table 4-12. Frequently used classes in System.Collections.Concurrent namespace

Class Explanation

ConcurrentBag<T> Represents a thread-safe, unordered collection of objects.
ConcurrentDictionary<TV> Represents a thread-safe collection of key-value pairs.
ConcurrentQueue<T> Represents a thread-safe First In, First Out (FIFO) collection.
ConcurrentStack<T> Represents a thread-safe Last In, First Out (LIFO) collection.

We'll discuss more about System.Collections.Concurrent in Chapter 8: Multithread, Async, and Parallel
Programming.

Implement Framework Interface

You can take advantage of .NET framework on custom types by implementing the following interfaces.
C# provides built-in interfaces that are useful to manage custom types for different useful purposes like
defining custom collections and dispose resources that are no longer needed.

e IEnumerable & IEnemerable<T>
e [Enumerator & [IEnumerator<T>

e ICollection & ICollection<T>

e [List & IList<T>

e IComparable & IComparable<T>
e IComparer & IComparer<T>

e IEquatable<T>

IEnumerable & IEnumerable<T>

.NET defined two base class libraries. There is non-generic IEnumerable interface to create a custom
non-generic collection and and there is generic type-safe IEnumerable<T> interface to create a custom
type-safe collection.

IEnumerable

IEnumerable interface is defined in System.Collections namespace. It helps to create a customized non-
generic collection. It contains a single GetEnumerator method that returns an IEnumerator. We’ll discuss
IEnumerator in much detail in a later topic. But for now, [Enumerator is used to iterate over a collection,
stores the information of a current index, its value, and whether or not a collection iteration has completed.

120

http://dx.doi.org/10.1007/978-1-4842-2860-9_8

CHAPTER 4 © ADVANCE C#

Foreach loop only iterate over those types which implemented IEnumerable interface, i.e., ArrayList
and Queue.

Listing 4-21. Definition of IEnumerable

public interface IEnumerable

{
}

IEnumerator GetEnumerator();

Listing 4-22. Define custom ArrayList

using System;
using System.Collections;

class myArraylList : IEnumerable

object[] array = new object[4];
int index = -1;

public void Add(object o)

{
if(++index < array.Length)
{
array[index] = o;
}
}
public IEnumerator GetEnumerator()
{
for(int i = 0; i < array.lLength; i++)
{
yield return array[i];
}
}
}
class Program
{

static void Main(string[] args)

{
myArrayList list = new myArraylList();

//stores object data in myArraylist
list.Add("Ali");

list.Add(22);

list.Add("Sundus");

list.Add(21);

121

CHAPTER 4 © ADVANCE C#

foreach (var item in list)

{
}

Console.WritelLine(item);

}

//0utput
Ali

22
Sundus
21

Explanation

Foreach loop called the GetEnumerator method of “list’, which yields a return value of each array’s index
on every iteration. Therefore, myArrayList has now become a custom collection due to IEnumerable. In
the following image, you can see a yield return value of each array’s index on every iteration. The following
figure (Figure 4-3) explains how yield return in a loop works.

0 1 2 3 0 1 2 3 0 1 2 3 0 . 2 3

Ali 22 PBundug 21 Al 22 Bundug 21 Ali 22 PBundug 21 Ali 22 Bundug 21

Figure 4-3. Yield return in a loop

Note Yield returns an item; it saved us from writing the complete code to define IEnumerator.

IEnumerable<T>

IEnumerable<T> is a type-safe interface defined in System.Collections.Generic namespace. It is used to
create a custom type-safe collection.

Listing 4-23. Definition of IEnumerable<T>

public interface IEnumerable<out T> : IEnumerable

{
}

IEnumerator<T> GetEnumerator();

Asyou can see, [IEnumerable<T> inherits an IEnumerable interface. Therefore, a type which
implements [Enumerable<T> must implement [IEnumerable, too.

122

CHAPTER 4 © ADVANCE C#

Listing 4-24. Create a custom type-safe collection

using System;
using System.Collections;
using System.Collections.Generic;

class myList<T> : IEnumerable<T>

{

List<T> list = new List<T>();

//Get length of list<T>
public int Length

{

}
public void Add (T data)

{
}

public IEnumerator<T> GetEnumerator()

{

get { return list.Count; }

list.Add(data);

foreach (var item in list)

{
}

yield return item;

}

IEnumerator IEnumerable.GetEnumerator()

{
//return IEnumerator<T> GetEnumerator()
return this.GetEnumerator();

}

class Person

{ public string Name { get; set; }
public int Age { get; set; }

ilass Program

{ static void Main(string[] args)

{

myList<Person> people = new myList<Person>();

people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Hogi", Age = 12 });

123

CHAPTER 4 © ADVANCE C#

Console.WriteLine("Total person: {0} \n", people.Length);
foreach (Person person in people)

{
}

Console.WriteLine("Name:{0} Age:{1}", person.Name, person.Age);

}

//0utput
Total Person: 3

Name:Ali Age:22
Name:Sundus Age:21
Name: Hogi Age:12

[Enumerator & IEnumerator<T>

.NET defined two base class libraries. There are non-generic and generic IEnumerator interfaces to define
the iteration of a collection.

IEnumerator

IEnumerator is non-generic interface defined in System.Collections namespace. It has methods and
properties that a collection implements to define its iteration.

Listing 4-25. Definition of IEnumerator

public interface IEnumerator

{
//Gets value of current index of collection
object Current { get; }
//Move to the next index of the collection
bool MoveNext();
//Move to the initial position of index = -1
void Reset();

}

Listing 4-26. Define the iteration of your custom collection with IEnumerator

using System;
using System.Collections;
using System.Collections.Generic;

class People : IEnumerable

{

Person[] people;
int index = -1;

124

CHAPTER 4 © ADVANCE C#

public void Add(Person per)

{
if (++index < people.Length)
{
people[index] = per;
}
}
public People(int size)
{

people = new Person[size];

public IEnumerator GetEnumerator()

{
}

return new PersonEnum(people);

}

//Implement IEnumerator
class PersonEnum : IEnumerator

{
Person[] _people;
int index = -1;

public PersonEnum(Person[] people)

{
}

//Check whether foreach can move to next iteration or not
public bool MoveNext()

{
}

//Reset the iteration
public void Reset()

{
}

//Get current value
public object Current

{

_people = people;

return (++index < _people.length);

index = -1;

get
{

}

return people[index];

125

CHAPTER 4 © ADVANCE C#

class Person

{
public string Name { get; set; }
public int Age { get; set; }
}
class Program
{
static void Main(string[] args)
{
People people = new People(3);
people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Hogi", Age = 12 });
foreach (var item in people)
{
//Cast from object to Person
Person person = (Person)item;
Console.WriteLine("Name:{0} Age:{1}", person.Name, person.Age);
}
}
}
//0utput

Name:Ali Age:22
Name:Sundus Age:21
Name: Hogi Age:12

IEnumerator<T>

IEnumerator<T> is a generic interface defined in System.Collections.Generic namespace. It has methods
and properties that a type-safe collection must implement to define its iteration.

Listing 4-27. Definition of IEnumerator<T>

public interface IEnumerator<out T> : IDisposable, IEnumerator

{

//element in the collection at the current position of the enumerator.
T Current { get; }

Asyou can see, IEnumerator<T> inherits IDisposable and IEnumerator interfaces. Therefore, a type
which implements IEnumerator <T> must implement these interfaces too.

126

CHAPTER 4 © ADVANCE C#

Listing 4-28. Write a type-safe iteration of a custom type-safe collection with [Enumerator<T>

using System;
using System.Collections;
using System.Collections.Generic;

class myList<T> : IEnumerable<T>

{
T[] list;
int index = -1;

public void Add(T obj)

{
if (++index < list.Length)

{
}

list[index] = obj;
}

public IEnumerator<T> GetEnumerator()

{
}

return new TEnum<T>(list);

IEnumerator IEnumerable.GetEnumerator()

{
}

return this.GetEnumerator();

public myList(int size)

list = new T[size];

}

//Implement IEnumerator
class TEnum<T> : IEnumerator<T>

{
T[] _list;
int index = -1;

public TEnum(T[] objs)
{

}

_list = objs;

//Return if foreach can iterate to next index or not
public bool MoveNext()

{
}

return (++index < _list.Length);

127

CHAPTER 4 © ADVANCE C#

}

public void Reset()
{

}

index = -1;

//Get type-safe value of current array's index
//Its the Implementation of IEnumerator<T>
public T Current

{
get
{
return list[index];
}
}

//It's the implementation of 'IEnumerator’
object IEnumerator.Current

{
get
{
//return T Current
return this.Current;
}
}

//It's the implementation of IDispose interface
public void Dispose()

{
}

//Write code to dispose un-needed resource

class Person

{

}

public string Name { get; set; }
public int Age { get; set; }

class Program

{

128

static void Main(string[] args)

{

myList<Person> people = new myList<Person>(3);

people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Hogi", Age = 12 });

CHAPTER 4 © ADVANCE C#

foreach (var item in people)

{
//No need to cast

Console.WriteLine("Name:{0} Age:{1}", item.Name, item.Age);

}

//0utput

Name:Ali Age:22
Name:Sundus Age:21
Name: Hogi Age:12

ICollection & ICollection<T>

ICollection and ICollection<T> are interfaces used to extend the definition of custom collection.

ICollection

ICollection is an interface defined in System.Collections to extend the definition of a custom non-generic
collection.
It defines size, enumerators, and synchronization methods for all nongeneric collections.

Listing 4-29. Definition of ICollection

public interface ICollection : IEnumerable

{
// Gets the number of elements contained in the ICollection.
int Count { get; }
// Gets a value indicating whether access to the ICollection
// is synchronized (thread safe).
bool IsSynchronized { get; }
//Gets an object that can be used to synchronize access to the ICollection.
object SyncRoot { get; }
// Copies the elements of the ICollection to an Array,
// starting at a particular System.Array index.
void CopyTo(Array array, int index);
}

ICollection inherits from IEnumerable. Therefore, all members of the IEnumerable interface must be
implemented in all classes that implement the ICollection interface.

ICollection<T>

ICollection<T> is a type-safe interface defined in System.Collections.Generic. It extends the functionality of
generic collections.

129

CHAPTER 4 © ADVANCE C#

It defines methods to manipulate generic collections.

Listing 4-30. Definition of ICollection<T>

public interface ICollection<T> : IEnumerable<T>, IEnumerable

{

// Gets the number of elements contained in the “Generic.ICollection’.
int Count { get; }

// Gets a value indicating whether the “Generic.ICollection”

// is read-only.

bool IsReadOnly { get; }

// Adds an item to the “System.Collections.Generic.ICollection”.

void Add(T item);

// Removes all items from the “Generic.ICollection™.
void Clear();

// Determines whether the ~System.Collections.Generic.ICollection®
// contains a specific value.

bool Contains(T item);

// Copies the elements of the “Generic.ICollection™ to an Array,
// starting at a particular System.Array index.

void CopyTo(T[] array, int arrayIndex);

// Removes the first occurrence of an object from the “Generic.ICollection’.

bool Remove(T item);

It doesn’t look exactly like a non-generic ICollection. The new definition of ICollection<T> has some

more methods like Add, Remove, and Clear.

IList & IList<T>

IList and IList<T> are interfaces that extend the functionality of a custom collection type.

IList

IList is an interface defined in System.Collections. IList implementations fall into three categories:

130

1. read-only
2. fixed-size

3. variable-size

CHAPTER 4 © ADVANCE C#

A read-only list cannot be modified. A fixed-size list cannot grow or shrink, but its elements can be
editable, whereas a variable-size list allows addition, removal, and modification of elements.
IList represents a non-generic collection of objects that can be individually accessed by index.

Listing 4-31. Definition of IList

public interface IList : ICollection, IEnumerable

{
// Gets or sets the element at the specified index.
object this[int index] { get; set; }
// Gets a value indicating whether the IList has a fixed size.
bool IsFixedSize { get; }
// Gets a value indicating whether the IList is read-only.
bool IsReadOnly { get; }
// Adds an item to the System.Collections.Ilist.
int Add(object value);
// Removes all items from the System.Collections.IList.
void Clear();
// Determines whether the IList contains a specific value.
bool Contains(object value);
// Determines the index of a specific item in the IList.
int IndexOf(object value);
// Inserts an item to the IList at the specified index.
void Insert(int index, object value);
// Removes the first occurrence of a specific object from the IList.
void Remove(object value);
// Removes the System.Collections.IList item at the specified index.
void RemoveAt(int index);
}

IList inherits from ICollection and IEnumerable. Therefore, all members of the ICollection and
IEnumerable interfaces must be implemented in all classes that implement the IList interface.

IList<T>

IList<T> is an interface defined in System.Collections.Generic. It is used to extend the custom generic
collection. It doesn’t look exactly like a non-generic IList. The new definition of IList<T> is a bit shorter
than the non-generic equivalent. We only have some new methods for accessing a collection with specific
positioning.

131

CHAPTER 4 © ADVANCE C#

Listing 4-32. Definition of IList<T>

IList<T> represents a collection of objects that can be individually accessed by index.

public interface IList<T> : ICollection<T>, IEnumerable<T>, IEnumerable

{

// Gets or sets the element at the specified index.
T this[int index] { get; set; }

// Determines the index of a specific item in the “Generic.IList 1.
int IndexOf(T item);

// Inserts an item to the "IGeneric.Ilist 1 at the specified index.
void Insert(int index, T item);

// Removes the “SGeneric.IList™ item at the specified index.
void RemoveAt(int index);

IList<T> inherits from ICollection<T>, IEnumerable<T>, and IEnumerable. Therefore, all members of
the ICollection<T>, IEnumerable<T>, and IEnumerable interfaces must be implemented in all classes that
implement the IList<T> interface.

IComparable & IComparable<T>

IComparable and IComparable<T> are interfaces used to define a comparison method for a type to order or sort its
instances. The CompareTo method returns an Int32 that has one of three values which have following meaning:

° Return zero, current instance will occur in the same position.

e Less than zero, current instance precedes the object specified by the CompareTo
method in the sort order.

e Greater than zero, current instance follows the object specified by the CompareTo
in the sort order.

IComparable

IComparable is an interface defined in System namespace. It takes an object as its parameter and returns a
result as an int32.

Listing 4-33. Definition of IComparable

public interface IComparable

{
// Compares the current instance with another object of the same
// type and returns
// an integer that indicates whether the current instance precedes,
// follows, or
// occurs in the same position in the sort order as the other object.
int CompareTo(object obj);

}

132

Listing 4-34. Implement IComparable and sort list of persons

using System;
using System.Collections;

class Person : IComparable

CHAPTER 4

=21 });

12 });

+ person.Name);

{
public string Name { get; set; }
public int Age { get; set; }
public int CompareTo(object obj)
{
Person next = (Person)obj;
return this.Age.CompareTo(next.Age);
}
}
class Program
{
static void Main(string[] args)
{
Arraylist people = new ArraylList();
people.Add(new Person { Name = "Sundus", Age
people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Hogi", Age =
//sort list of persons
people.Sort();
foreach(Person person in people)
{
Console.WriteLine(person.Age + " "
}
}
}
//0utput
12 Hogi
21 Sundus
22 Ali

IComparable<T>

ADVANCE C#

IComparable<T> is type-safe interface defined in System namespace. It takes a type-safe parameter and
returns a result as an int32. Its implementation is the same as IComparable.

133

CHAPTER 4 © ADVANCE C#

Listing 4-35. Definition of IComparable<T>

public interface IComparable<in T>

{
// Compares the current instance with another object of the same type
// and returns an integer that indicates whether the current instance
// precedes, follows, or occurs in the same position in the sort
order // as the other object.
int CompareTo(T other);
}

using System;
using System.Collections.Generic;

class Person : IComparable<Person>

{
public string Name { get; set; }
public int Age { get; set; }
public int CompareTo(Person other)
{
return this.Age.CompareTo(other.Age);
}
}
class Program
{
static void Main(string[] args)
{
List<Person> people = new List<Person>();
people.Add(new Person { Name = "Sundus", A
people.Add(new Person { Name = "Ali", Age
people.Add(new Person { Name = "Hogi", Age
//sort list of persons
people.Sort();
foreach(var person in people)
{
Console.WriteLine(person.Age + " "
}
}
}
//0utput
12 Hogi
21 Sundus
22 Ali

134

ge =21 });
=22 });
=12 });

+ person.Name);

CHAPTER 4 © ADVANCE C#

IComparer & IComparer<T>

IComparer and IComparer<T> are interfaces used to implement in a separate class that helps to sort the
objects according to its field or property values.

IComparer

IComparer is an interface defined in System.Collections.Generic namespace. It helps to compares two
objects.

Listing 4-36. Definition of IComparer

public interface IComparer

{
// Compares two objects and returns a value indicating whether one is
// less than, equal to, or greater than the other.
int Compare(object x, object y);

}

Listing 4-37. Sort person by age and name

using System;
using System.Collections;

class Person

{
public string Name { get; set; }
public int Age { get; set; }
}
class sortAge : IComparer
{
public int Compare(object x, object y)
{
Person first = (Person)x;
Person second = (Person)y;
return first.Age.CompareTo(second.Age);
}
}

class SortName : IComparer

{
public int Compare(object x, object y)

{
Person first = (Person)x;
Person second = (Person)y;

135

CHAPTER 4 © ADVANCE C#

return first.Name.CompareTo(second.Name);

}
}
class Program
{
static void Main(string[] args)
{
Arraylist people = new Arraylist();
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Hogi", Age = 12 });
//sort list according to age
people.Sort(new sortAge());
foreach(Person person in people)
{
Console.WriteLine(person.Age + " " + person.Name);
}
Console.WriteLine();
//sort list according to name
people.Sort(new SortName());
foreach (Person person in people)
{
Console.WriteLine(person.Name + " " + person.Age);
}
}
}
//0utput
12 Hogi
21 Sundus
22 Ali
Ali 22
Hogi 12
Sundus 21
IComparer<T>

IComparer<T> is a type-safe interface defined in System.Collections.Generic. It helps to compares two
objects. It takes type-safe parameters for its Compare method.

136

CHAPTER 4 © ADVANCE C#

Listing 4-38. Definition of IComparer<T>

public interface IComparer<in T»>

{
// Compares two objects and returns a value indicating
// whether one is less than, equal to, or greater than the other.
int Compare(T x, T y);

}

Listing 4-39. Sort person by age and name

using System;
using System.Collections.Generic;

class Person

{
public string Name { get; set; }
public int Age { get; set; }
}
class sortAge : IComparer<Person>
{
public int Compare(Person x, Person y)
{
return x.Age.CompareTo(y.Age);
}
}
class SortName : IComparer<Person>
{
public int Compare(Person x, Person y)
{
return x.Name.CompareTo(y.Name);
}
}

class Program

{

static void Main(string[] args)

{

List<Person> people = new List<Person>();
people.Add(new Person { Name = "Sundus", Age = 21 });
people.Add(new Person { Name = "Ali", Age = 22 });
people.Add(new Person { Name = "Hogi", Age = 12 });

//sort list according to age
people.Sort(new sortAge());

137

CHAPTER 4 © ADVANCE C#

foreach(var person in people)

{
}

Console.WriteLine(person.Age + + person.Name);

Console.WriteLine();
//sort list according to name
people.Sort(new SortName());

foreach (var person in people)

{
}

Console.WritelLine(person.Name + + person.Age);

}

//0utput
12 Hogi
21 Sundus
22 Ali

Ali 22
Hogi 12
Sundus 21

IEquatable<T>

[Equatable<T> is an interface implemented by types whose values can be equated (for example, the numeric
and string classes). But for most reference types using I[Equatable is avoided because, if you do, you need to
override Object.Equals(Object) and GetHashCode methods. Therefore, their behavior is consistent with the
IEquatable.Equals method.

Listing 4-40. Definition of IEquatable<T>

public interface IEquatable<T>

{
// Indicates whether the current object is equal to
// another object of the same type.
bool Equals(T other);

}

Listing 4-41. Equate two objects
using System;

class Person : IEquatable<Person>

{
public string Name { get; set; }
public int Age { get; set; }

138

}

CHAPTER 4

public bool Equals(Person other)

{
if(this.Name.CompareTo(other.Name) == 0 &3 this.Age == other.Age)
{
return true;
}
else
{
return false;
}
}
public override bool Equals(object obj)
{
Person other = (Person)obj;
return this.Equals(other);
}
public override int GetHashCode()
{
//custom implementation of hashcode
string hash = this.Name + this.Age;
return hash.GetHashCode();
}

public static bool operator ==(Person personi, Person person2)

if (((object)person1) == null || ((object)person2) == null)
return Object.Equals(personi, person2);

return personi.Equals(person2);

}
public static bool operator !=(Person personi, Person person2)

if (((object)person1) == null || ((object)person2) == null)
return !0bject.Equals(personl, person2);

return !(personi.Equals(person2));

class Program

{

static void Main(string[] args)

{
Person personl = new Person();
personl.Age = 22;
personil.Name = "Ali";

ADVANCE C#

139

CHAPTER 4 © ADVANCE C#

Person person2 = new Person();
person2.Age = 22;
person2.Name = "Ali";

Console.Writeline(personl == person2);

}

//0utput
True

Working with Strings

String is used to store text values. String is immutable, which means once a string variable stores some text it
cannot edit it again; the text is stored as a read-only collection of Char objects. Therefore, whenever a string
variable’s value is updated, it re-creates an instance for string literals, which is not good in terms of memory
and process consumption.

Listing 4-42. Record how much time it takes to append a string 1,000,000 times

using System;
using System.Diagnostics; //for stopwatch

class Program

{
static void Main(string[] args)
{
Stopwatch watch = new Stopwatch();
//Record how much time
watch.Start();
string mystring = "test";
for(int i = 1; i <100000; i++)
{
mystring += i;
}
//Stop Recording time
watch.Stop();
float miliToSec = watch.ElapsedMilliseconds / 1000;
Console.WriteLine("Total time: {0}s", miliToSec);
}
}
//0utput

Total time: 51s

In my machine, it took 51 seconds to append a string for 100,000 times, because every time CLR creates a
new instance of string literals and reassigns its reference to a string variable.

140

CHAPTER 4 © ADVANCE C#

StringBuilder

StringBuilder is a class of System.Text which provides better performance on manipulating text data in a
much better way than a traditional System.String does. StringBuilder is mutable, which means text data can
be editable. Its Append method helps to concatenate text data in a better way.

Listing 4-43. Record how much time it takes to append a StringBuilder’s text for 100,000 times

using System;
using System.Diagnostics; //for stopwatch
using System.Text;

class Program

{
static void Main(string[] args)
{
Stopwatch watch = new Stopwatch();
//Record how much time
watch.Start();
StringBuilder mystring = new StringBuilder("test");
for(int i = 1; i <100000; i++)
{
mystring.Append(i);
}
//Stop Recording time
watch.Stop();
Console.WriteLine("Total time: {0}ms", watch.ElapsedMilliseconds);
}
}
//0utput

Total time: 35ms

In my machine, it took 35 milliseconds to append a text in StringBuilder, whereas in the previous
example System.String took 51 seconds. Hence StringBuilder is faster than System.String

StringReader

StringReader is a class of System.IO used to read lines from a string. With StringReader, we can read a
character with Read or ReadAsync method, and an entire string with ReadToEnd or ReadToEndAsync
method. This type helps to access string data through a stream-oriented interface.

Listing 4-44. Read line by line string with StringReader
using System;

using System.IO;

class Program

{
141

CHAPTER 4 © ADVANCE C#

static void Main(string[] args)
{
//'@" It's a verbatim string literal. It ignores escape sequence
string text = @"Hi I'm Ali Asad.
I can help you in C# Certification Exam.
I've helped many individuals like you in their exam prep.
I believe if we work together, you can become:
Microsoft Certified Professional & Specialist in C#";

StringReader reader = new StringReader(text);
int currentline = 0;

string line = "";

//return each line of string to 'line’
while((line = reader.ReadlLine())!= null)

Console.Writeline("line{0}: {1}", ++currentlLine, line);

}
}
//0utput
Linel: Hi I'm Ali Asad.
Line2: I can help you in C# Certification Exam.
Line3: I've helped many individuals like you in their exam prep.
Line4: I believe if we work together, you can become:
Line5: Microsoft Certified Professional & Specialist in C#

StringWriter

StringWriter is a class of System.IO. It is used to write to a StringBuilder class. With StringWriter, we can
write a character/string with Write or WriteAsync method, and an entire string line with WriteLine or
WriteLineAsync method. It’s an efficient way of using StringBuilder with StringWriter to manipulate string.

Listing 4-45. Write string data in StringBuilder by using StringWriter

using System;
using System.IO;
using System.Text;

class Program

{

static void Main(string[] args)
{
StringBuilder builder = new StringBuilder();

StringWriter swriter = new StringWriter(builder);

swriter.Write("Ali Asad");

142

CHAPTER 4 © ADVANCE C#

Console.WriteLine(builder.ToString());

}

//0utput
Ali Asad

Enumerate String Methods

String used for text data. It has many methods and properties that help to maniuplate text data. Some of
them are listed below.

Clone()

Use to make clone of string in object type.

string text = "Ali Asad";
string cloned = text.Clone() as string;
Console.Writeline(cloned);

//0utput
Ali Asad

CompareTo()
Compare two string values and return integer value. It returns 0 for true.

"ali",’
"asad“;

string text1
string text2

if((text1.CompareTo(text2)) == 0)

Console.WriteLine("both text are same");

}

else

{

}

//0utput
both text aren't same

Console.WritelLine("both text aren't same");

EndsWith()

Return true if it finds a specified character is the last character of a string.

string text1 = "ali";
Console.WriteLine(text1.EndsWith("i"));

//0utput
True

143

CHAPTER 4 © ADVANCE C#
Equals()
Compare two strings and return true if they’re equal.

string text1
string text2 =

"ali";

Console.WritelLine(text1.Equals(text2));

//0utput
True

IndexOf()

Return the index number of the first occurrence of a specified character.
string text1 = "ali";
Console.WriteLine(text1.IndexOf('1"));

//0utput
1

ToLower()

Return the lower case of string.
string text1 = "ALI";
Console.Writeline(text1.ToLower());

//0utput

ali

ToUpper()

Return the upper case of string.
string text1 = "ali";
Console.WriteLine(text1.ToUpper());

//0utput
ALI

Insert()

Return a new string in which a new character/string is inserted at a specified index of a string.
string text1 = "Ali";
Console.WritelLine(text1.Insert(3, " Asad"));

//0utput
Ali Asad

144

CHAPTER 4 © ADVANCE C#

LastIndexOf()

Return the last index of a specified character in a string.

string text1 = "ali asad";
Console.WritelLine(text1.LastIndex0f('a"));

//0utput

6

Remove()

Return a new string by deleting all the characters from a specified index to the end.
string text1 = "ali asad";
Console.WritelLine(text1.Remove(3));

//0utput

ali

Replace()

Return a new string in which the occurrence of specified characters are replaced with other specified
characters.

string text1 = "ali asad";
Console.WritelLine(text1.Replace("ali", "asad"));

//0utput
asad asad

Split()
Split a string into an array of strings that are based on the characters that occur in a string.
string text1 = "ali asad";

string[] subString = text1.Split(' ');

foreach (var item in subString)

{

}

//0utput
ali
asad

Console.WriteLine(item);

StartsWith()

Return true if the beginning of a string starts with a specified character/string.
string text1 = "ali asad";
Console.WriteLine(text1.StartsWith("al"));

//0utput
True

145

CHAPTER 4 © ADVANCE C#

Substring()

Return a new string that contains characters from a specified start index to a specified length of characters.
string text1 = "ali asad";

Console.Writeline(text1.Substring(2, 5));
//0utput
i asa
ToCharArray()

Return a new character array that contains a character of a string.
string text1 = "ali";
char[] chArray = texti.ToCharArray();

foreach (var item in chArray)

{

}

//0utput
a
1

i

Console.Writeline(item);

Trim()
Remove whitespaces from the beginning and ending of a string.

string text1 = ali H
Console.WriteLine("{0} {1}", text1.Trim().Length, text1.Trim());

//0utput
3 ali

ToString()

Converts an object to its string representation. It’s a method that can be overridden in any custom type to get
the object information as a string.

using System;

class Person

{
public string Name { get; set; }
public int Age { get; set; }

public override string ToString()

{
146

+ "Age = " + this.Age;

string data = "Name = " + this.Name +

return data;

}
}
class Program
{
static void Main(string[] args)
{
Person person = new Person { Name = "Ali", Age = 22 };
//person & person.ToString() are same in this case
//Hence, both produce the same result at runtime.
//person = person.ToString()
Console.WriteLine(person);
Console.WriteLine(person.ToString());
}
}
Output

Name = Ali Age = 22

String.Format Method

CHAPTER 4

String.Format helps to represent objects values in a specified format and return them as a string.

Its syntax is similar to Console.WriteLine method.

Syntax
string variable = string.Format("");
Code Snippet

string name = "Ali";
int age = 22;

string info = string.Format("Name = {0} Age = {1}", name, age);

Console.Writeline(info);

//0utput
Name = Ali Age = 22

Special Formats to Display Object Value

ADVANCE C#

Objects are of multiple kinds. For each kind, data is stored or displayed in a different format. Some of the

formats are listed below:
e Standard Numeric Formats
e Control Spacing

e Control Alignment

147

CHAPTER 4 © ADVANCE C#

Standard Numeric Formats

Standard numeric strings are used to format common numeric types. These are listed below in a table.

Table 4-13. Numeric Format Specifier

Format Specifier Explanation

“C” or “c” Used to format currency value

“D” or “d” Used to format integer digit with optional negative sign
“E” or “¢” Used to format exponential notation

“F” or “t” Used for precision specifier to define fixed floating value
“N” or “n” Used to format numbers by group separators

“P” or “p” Used to display percentage with number

“X” or “x” Used to display Hexadecimal value

Listing 4-46. Use currency format

decimal price = 1921.39m;
Console.WriteLine(price.ToString("C"));

//0utput
$1,921.39

Listing 4-47. Use integer digit format

int temp = 12;
Console.Writeline(temp.ToString("D"));
//D3 = 3 digits will be display (012)
Console.WriteLine(temp.ToString("D3"));

//0utput
12
012

Listing 4-48. Use exponential format

double value = 54321.6789;
Console.WriteLine(value.ToString("E"));

//0utput
5.432168E+004

Listing 4-49. Use fixed-float format

double Number = 18934.1879;
Console.WriteLine(Number.ToString("F"));

//0utput
18934.19

148

CHAPTER 4

Listing 4-50. Use group separaters to format numbers

int Number = 12345678;
Console.WriteLine(Number.ToString("N"));

//0utput
12,345,678,00
Listing 4-51. Show percentage value

int Number = 1;
Console.WriteLine(Number.ToString("P"));

//0utput
100.00%
Listing 4-52. Display Hexadecimal value of a number

int Number = 2154;
Console.WriteLine(Number.ToString("X"));

//0utput
86A

Control Spacing

Spacing is helpful to format the output. String can help to format the spacing.

Listing 4-53. Create 10 spaces
string name = "Ali";
int age = 22;
Console.WriteLine("Name {0,10} | Age {1, 10}", name, age);

//0utput
Name Ali | Age 22

Control Alignment

ADVANCE C#

By default strings are right-aligned. To create a left-aligned string in a field, you need to use a negative sign,

such as {0, -5} to define a 5-character right-aligned field.

Listing 4-54. Control text alignment

string name = "Ali";

Console.WritelLine("- {0,-8} |end", name);

//0utput
- Ali |end

149

CHAPTER 4 © ADVANCE C#

Summary

e Boxing refers to implicit conversion of a value type into an object type or to any
interface that it implements.

e Unboxing refers to an explicit conversion of an object type to a non-nullable-value
type or the conversion of an interface type to a non-nullable-value type.

¢ Boxing could take up to 20 times longer than a simple reference assignment. When a
boxed value is unboxed, it takes 4 times longer than a simple reference assignment.

e Generics perform compile-time checks for type safety and it is much faster than
boxing/unboxing.

e where keyword is used to apply constraints on generic type parameters.
e C# defines data-structure in a collection (i.e., ArrayList, Stack, Queue).

e User can create a custom collection by implementing IEnumerable or
IEnumerable<T>.

e StringBuilder provides better performance on manipulating text data in a much
better way than traditional System.String does.

e StringReader is usually used to read lines from a string.
e StringWriter is used to write text to a StringBuilder.

e String.Format helps to represent objects values in a specified format and return
them as a string.

Code Challenges

Challenge 1: Develop a Custom Generic Collection.
Create a custom generic collection which implements the following interfaces.
e JList<T>
e ICollection<T>

e IEnumerable<T>

Practice Exam Questions

Question 1

You are developing a game that allows players to collect from 0 through 1,000 coins. You are creating a
method that will be used in the game. The method includes the following code. (Line numbers are included
for reference only.)

01 public string FormatCoins(string name, int coins)
02 {

03

04 }

150

CHAPTER 4 © ADVANCE C#

The method must meet the following requirements:

e Return a string that includes the player name and the number of coins.

e Display the number of coins without leading zeros if the number is 1 or greater.

e Display the number of coins as a single 0 if the number is 0.

You need to ensure that the method meets the requirements. Which code segment should you insert at
line 03?

A)
return

B)

return

0)
return

D)
return

string.Format("Player {0}, collected {1} coins", name, coins.ToString("###0"));

string.Format("Player {0}, collected {1:000#} coins", name, coins.ToString());

string.Format("Player {name}, collected {coins.ToString('###0')} coins");

string.Format("Player {0}, collected {1:D3} coins", name, coins);

Question 2

The following code is boxed into object o.

You're asked to cast “object 0” into “int

A)
int i

B)
int i
C)
int i

D)
int i

double d
object o

34.5;
d;

»

(int)o;

(int) (double)o;

(int)(float)(double)o;

(float)o;

151

CHAPTER 4 © ADVANCE C#

Question 3

Suppose you're developing an application which stores a user’s browser history. Which collection class will
help to retrieve information of the last visited page?

A)
Arraylist

B)

Queue

C)
Stack

D)
HashTable

Answers

152

CHAPTER 5

Implementing Delegates & Events .

In any modern language, event-driven development is used to structure a program around various events. These
events perform a certain functionality when a certain condition satisfies, for example, close the application when
a user clicks on the “Exit” button. Or shut down the system when the heat Temperature rises, etc.

In this chapter, we’ll learn everything we need to know about event-driven development in C#.

Delegate

Delegate is a type, similar to function pointers in C/C++. It stores the reference of a method inside a delegate
object, to invoke the referenced method anywhere in the code. It also allows the method to be passed as an
argument of another method. Unlike function pointers in C++, delegates are type-safe function pointers.

Delegate declaration determines a type that can refer to a method, which has the same set of arguments
and returns a type. A single delegate object can hold the reference of multiple methods that can be called on
a single event.

Syntax
access_specifier delegate retun_type delegateName(argument list);
Code Snippet

Listing 5-1. Declare, instantiate, and use a delegate

//declare a delegate
public delegate void delegateName(string msg);

// Declare a method with the same signature as the delegate.
static void display(string msg)

{
Console.WriteLine(msg);
}
static void Main(string[] args)
{

// Create an instance of the delegate
delegateName del = new delegateName(display);

//Calling the delegate
del("Ali Asad");

}

© Ali Asad and Hamza Ali 2017 153
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_5

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

¢ new delegateName(display); pass “display” method’s reference in the
delegateName constructor.

e del(“Ali Asad”); call “del” which invokes the “display” method.

Delegate can also store a method’s reference directly. See the following code snippet.

Listing 5-2. Store reference of a method directly

// Create an instance of the delegate
delegateName del = display;

Delegate can also be invoked by using the .invoke method. See the following code snippet.

Listing 5-3. Use the .invoke method

//call method by using .invoke() and pass string msg
del.Invoke("Ali Asad");

Multicast Delegate

Delegate holds the reference of more than one method called multicast delegate. It helps to invoke the
multiple methods.

e Byusing +=, delegate can add a new method’s reference on top of an exisiting stored
reference.

e Byusing -=, delegate can remove a method’s reference from a delegate’s instance.

Listing 5-4. Add multiple method’s reference

using System;

//declare a delegate

public delegate void delegateName(string msg);

class MyClass

{
// Declare a method with the same signature as the delegate.
static void display(string msg)

{

Console.WriteLine("display: {0}", msg);
}
static void show(string msg)
{

Console.WriteLine("show: {0}", msg);
}
static void screen(string msg)
{

Console.WriteLine("screen: {0}", msg);
}

154

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

static void Main(string[] args)

{
delegateName del = display;
//Multicast delegate
del += show;
del += screen;
//calling delegate
del("Ali");
}
}
//0utput
display: Ali
show: Ali
screen: Ali

e del += add reference of method on top of existing reference of method.

e del(“Ali Asad”); invoke all methods one-by-one in the same order they were added.

Listing 5-5. Remove method’s reference from a delegate’s instance

using System;

//declare a delegate

public delegate void delegateName(string msg);

class MyClass

{
// Declare a method with the same signature as the delegate.
static void display(string msg)

{
Console.WriteLine("display: {0}", msg);
}
static void show(string msg)
{
Console.WriteLine("show: {0}", msg);
}
static void screen(string msg)
{
Console.WriteLine("screen: {0}", msg);
}

static void Main(string[] args)

{
delegateName del = display;

155

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

//Multicast delegate
del += show;
del += screen;

//remove method's reference
del -= show;

//calling delegate
del("Ali");

}

//0utput
display: Ali
screen: Ali

e del -=show; removes the reference of a show method from a delegate instance.

Listing 5-6. Loop over each method by using getinvocationlist method
using System;
//declare a delegate

public delegate int delegateName();
class MyClass

{

static int Get20()

{
Console.Write("Get20(): ");
return 20;

}

static int Get3o()

{
Console.Write("Get30(): ");
return 30;

}

static int Get15()

{
Console.Write("Get15(): ");
return 15;

}

static void Main(string[] args)

{
delegateName del = Get20;

//add method reference
del += Get30;
del += Get20;
del += Get1s;

156

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

foreach (delegateName item in del.GetInvocationList())

{
//invoke each method, and display return value
Console.WritelLine(item());
}
}
}
//0utput
Get20(): 20
Get30(): 30
Get20(): 20
Get15(): 15

e del.GetInvocationList(); returns a list of all referenced methods stored in “del”.

Common Built-in Delegates

C# provides many built-in delegates that are useful for common purposes. These built-in types provide a
shorthand notation that virtually eliminates the need to declare delegate types.
Some common built-in delegates are:

e Action
e Action<>
. Func<>

e Predicate<>

Action

Action is a built-in delegate type available in System namespace. It can be used with methods that don’t
return a value and have no parameter list.

Syntax
public delegate void Action()
Code Snippet

Listing 5-7. Use Action delegate

using System;

class MyClass

{
static void voidMethod()
{
Console.WriteLine("Void Method");
}

157

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

static void emptyMethod()

{
Console.WriteLine("Empty Method");
}
static void Main(string[] args)
{
Action act = voidMethod;
act += emptyMethod;
act();
}
//0utput

Void Method
Empty Method

Action<>

Action<> is a generic delegate. It can be used with methods that at least have one argument and don’t return
avalue. Action<> delegate comes with 16 generic overloads, which means it can take up to 16 arguments of
void method.

Code Snippet
Listing 5-8. Use Action<> delegate

using System;

class MyClass

{
static void myintMethod(int i)
{
Console.WriteLine("myintMethod: i = {0}", 1i);
}
static void myintStringMethod(int i, string s)
{
Console.WriteLine("myintStringMethod: i = {0} s = {1}", i, s);
}
static void Main(string[] args)
{
Action<int> myIntAct = myintMethod;
Action<int, string> myIntStringAct = myintStringMethod;
myIntAct(22);
myIntStringAct(22, "Ali");
}
}

158

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

//0utput
myintMethod: i = 22
myintStringMethod: i = 22 s = Ali

e Action<> delegate is type-safe, which means it can take arguments of any type and
the argument type will be type-safe at compile time.

Func<>

Func<> is a generic delegate. It can be used with methods that return a value and may have a parameter list.
The last parameter of Func<> determines the method’s return type and the remaining parameters are used
for a method’s argument list. Func<> delegate comes with 17 generic overloads, which means it uses the last
parameter as a method’s return type and the remaining 16 can be used as a method’s argument list. Also, if
the Func<> has only one parameter, then its first parameter would be considered as a method’s return type.

Code Snippet

Listing 5-9. Use Func<> delegate

using System;

class MyClass

{

static int Add(int x, int y)

{
Console.Write("{o} + {1} = ", x, y);
return (x + y);

}

static int Min(int x, int y)

{
Console.Write("{o} - {1} = ", x, y);
return (x - y);

}

static int Mul(int x, int y)

{
Console.Write("{o} * {1} = ", x, y);
return (x * y);

}

static string Name()

{
Console.Write("My name is = ");
return "Ali Asad";

}

static string DynamicName(string name)

{
Console.Write("My name is = ");
return name;

}

159

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

static void Main(string[] args)

{

//return string value
Func<string> info = Name;
Console.WritelLine(info());

//return string, and take string as parameter
Func<string, string> dynamicInfo = DynamicName;
Console.WriteLine(dynamicInfo("Hamza Ali"));

//return int, and take two int as parameter
Func<int, int, int> calculate = Add;
calculate += Min;

calculate += Mul;

foreach (Func<int, int, int> item in calculate.GetInvocationList())

{
}

Console.Writeline(item(10,5));

}

//0utput
My name is = Ali Asad
My name is = Hamza Ali

10 + 5 =15
10 - 5 =10
10 ¥ 5 = 50

e First parameter in func<> determines the method return type and the remaining are
considered as a list of the argument type of method.

Predicate<T>

A predicate delegate represents a method that takes one input parameter and returns a bool value on the
basis of some criteria.

Syntax
public delegate bool Predicate<T>()
Code Snippet

Listing 5-10. Use Predicate to determine if a number is even or not

using System;

class MyClass
{

160

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

static bool Even (int i)

{
return (i % 2 == 0);
}
static void Main(string[] args)
{
Predicate<int> isEven = Even;
Console.Writeline(isEven(7));
}
}
//0utput
False

Variance in Delegate

With variance in delegates, the method doesn’t need to match the delegate type. Because variance provides
a degree of flexibility when matching a delegate type with the method signature, we can use variance in the
following two ways.

1. Covariance

2. Contravariance

Covariance

Covariance is applied on a method’s return type. With covariance, a delegate can hold a reference of a
method, whose return value is a derived type of the return type in the delegate signature.

Code Snippet

Listing 5-11. Covariance in Delegate

using System;

class Parent { }
class Child : Parent { }

delegate Parent CovarianceHandle();

class Program

{
static Child CovarianceMethod()
{
Console.Writeline("Covariance Method");
return new Child();
}

static void Main(string[] args)

161

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

{
//Covariance
CovarianceHandle del = CovarianceMethod;
del();
}
}
//0utput

Covariance Method

Contravariance

Contravariance is applied on a method’s parameter type. With contravariance, a delegate can hold a
reference of a method whose parameter value is a base type of the delegate signature parameter type.

Code Snippet

Listing 5-12. Contravariance in Delegate

using System;

class Parent { }
class Child : Parent { }

delegate void ContravarianceHandle(Child c);

class Program

{
static void ContravarianceMethod(Parent p)
Child ch = p as Child;
Console.Writeline("Contravariance Method");
}
static void Main(string[] args)
{
ContravarianceHandle del = ContravarianceMethod;
Child child = new Child();
//Contravariance
del(child);
}
//0utput

Contravariance Method

162

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

Problems with Delegate
Delegates have a few problems which events have overcome. These problems are:
1. Anyone can use an assignment operator which may overwrite the references of
methods.
Listing 5-13. Overwrite the references of methods in Delegate
using System;

class Program

{

static void Display()
{

}

static void Show()
{

}

static void Main(string[] args)

{

Console.WriteLine("Display");

Console.WriteLine("Show");

Action act = Display;
act += Show;

act = Display;
act();

}

//0utput
Display

2. Delegate can be called anywhere in code, which may break the rule of
Encapsulation.

Listing 5-14. Alert on high room Temperature

using System;

class Room
{
public Action<int> OnHeatAlert;
int temp;
public int Temperature
{

get { return this.temp; }
set

163

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

{
temp = value;
if (temp > 60)
if (OnHeatAlert != null)
{
OnHeatAlert(temp);
}
}
}
}
}
class Program
{
static void Alarm(int temp)
{
Console.WriteLine("Turn On AC, Its hot. Room temp is {0}", temp);
}
static void Main(string[] args)
{
Room room = new Room();
room.OnHeatAlert = Alarm;
//0nHeatAlert will be called
room.Temperature = 90;
room.Temperature = 15;
//0nHeatAlert will be called
//Which shouldn't be called becaust room is not hot
room.OnHeatAlert(room.Temperature);
//Delegate is called outside the Room class
}
}
//0utput

Turn On AC, Its hot. Room temp is 90
Turn On AC, Its hot. Room temp is 15

Anonymous Method

An anonymous method is a method without a name. These are methods that are defined with a delegate
keyword. An anonymous method doesn’t have a return type in its signature. Its return type depends on the
type of delegate variable which holds its reference.

Syntax
delegate type delegate variable = delegate (parameter list)

//Method Body
};

164

Code Snippet

Listing 5-15. Implement anonymous method(s)

using System;

class Program

{
static void Main(string[] args)
{
//Anonymous method that doesn't return value
Action act = delegate ()
{
Console.WriteLine("Inside Anonymous method");
b
//Anonymous method that does return value
Func<int, int> func = delegate (int num)
{
Console.Write("Inside Func: ");
return (num * 2);
b
act();
Console.WritelLine(func(4));
}
}
//0utput

Inside Anonymous method
Inside Func: 8

Listing 5-16. Pass anonymous method as a method argument

using System;

class Program

IMPLEMENTING DELEGATES & EVENTS

{
public static void TestAnonymous(Action act)
{
act();
}
static void Main(string[] args)
{
TestAnonymous (delegate ()
{
Console.WriteLine("Pass anonymous method in method's perameter");
1;
}
}
//output

Pass anonymous method in method's perameter

165

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

Lambda Expression

Lambda expression is a better version of implementing the anonymous method.

Syntax
delegate type delegate variable = (parameter list) =>

//Method Body
};

OR

delegate_type delegate variable = (parameter list) => expression;

To create a lambda expression, we specify input parameters (if any) on the left side of the lambda
operator =>, and put the expression or statement block on other side.

Code Snippet

Listing 5-17. Implement anonymous method with lambda expression

using System;

class Program

{
static void Main(string[] args)
{
//Lambda Expression that doesn't return value
Action act = () =>
{
Console.WriteLine("Inside Lambda Expression");
};
//Lambda Expression that does have return value
Func<int, int> func = (int num) =>
{
Console.Write("Inside Func: ");
return (num * 2);
};
act();
Console.WritelLine(func(4));
}
}
//0utput

Inside Anonymous method
Inside Func: 8

166

https://msdn.microsoft.com/en-us/library/bb311046.aspx

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

If an anonymous method’s body contains only single statement, then mentioning curly braces “{}” and
areturn keyword with the value being returned is optional. See the following code snippet:

Listing 5-18. Implement inline anonymous method

using System;

class Program

{
static void Main(string[] args)
{
//Lambda Expression that doesn't return value
Action act = () => Console.WriteLine("Hello World");
//Lambda Expression that does have return value
Func<int, int> func = (int num) => num * 2;
act();
Console.WritelLine(func(4));
}
}
//0utput

Hello World
Inside Func: 8

Lambda expression also gives the ability to not specify a parameter type. Its parameter type will depend
on the parameter type of the delegate type which holds its reference. See the following code snippet.
Listing 5-19. Anonymous method without specifying parameter type

//type of name will be string
Action<string> actName = (name) => Console.WritelLine(name);

//for single parameter, we can neglect () paranthese
Action<string> actName2 = name => Console.WritelLine(name);

Func<int, int> mul = (x) => x * 2;

actName("Ali");
actName2("Ali");

Console.WriteLine(mul(10));

//0utput
Ali

Ali

20

167

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

Listing 5-20. Passlambda expression on a method parameter

using System;

class Program

{
static void TestLambda(Action act)
{
Console.WriteLine("Test Lambda Method");
act();
}
static void Main(string[] args)
{
//Pass Lambda expression as parameter
TestLambda(() =>
Console.WriteLine("Inside Lambda");
D;
}
}
//0utput

Test Lambda Method
Inside Lambda

Event

Event is an action that executes when a specified condition satisfied. It notifies all its subscribers about the
action that is going to be executed. For example, when a Windows 10 event was launched, Microsoft notified
every customer to update their OS for FREE. So in this case, Microsoft is a publisher who launched (raised)
an event of Windows 10 and notified the customers about it and customers are the subscribers of the event
and attended (handled) the event.

Similarly, in C# event is used in class to provide notifications to clients of that class when something
happens to its object. Events are declared using delegates. Therefore, a class that contains the definition of
an event and its delegate is called Publisher. On the other hand, a class that accepts the event and provides
an event handler is called Subscriber.

Syntax
event delegate type OnEventName;
CodeSnippet

Listing 5-21. Declare an event

delegate void DieEventHandler();
class Person

{

//Declare an event
public event DieEventHandler Die;

168

CHAPTER 5

IMPLEMENTING DELEGATES & EVENTS

Event always is a data member of a class or struct. It cannot be declared inside a

method.

Itis good naming convention to postfix a custom delegate name with
“EventHandler” only when it is going to be used with event.

Listing 5-22. Handling and raising an event

using System;

class Room

{

public event Action<object> Alert;

private int Temperature;
public int Temperature

get { return this.Temperature; }
set

{
this.Temperature = value;
if(Temperature > 60)
{
if(Alert != null)
Alert (this);
}
}
}

class Program

static void Main(string[] args)

Room myRoom = new Room();

//Subcribe to an event
myRoom.Alert += OnAlert;

//Alert Event will invoke
myRoom. Temperature = 65;

private static void OnAlert(object o)

{
}
}
{
{
}
{
}
}

Room room = (Room)o;

Console.WriteLine("Shutting down. Room temp is {0}", room.Temperature);

169

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

//0utput
Shutting down. Room temp is 65

e Event always gets subscribed by using +=, for example, myRoom.Alert += OnAlert;.
It cannot be subscribed by using a single assignment operator.

e Event gets unsubscribed by using object.EventName -= MethodName;.

¢ myRoom.Temperature = 65; Alert event will invoke because room’s temperature is
greater than 60. Hence the condition satisfies and the event shall invoke.

e For naming convention, it is good to prefix a method’s name with On only when it is
going to be used with event, for example, OnAlert.

e Eventshall always be invoked inside a class where it is defined. Unlike delegates,
events cannot be invoked outsite the class where they are defined.

Use Built-in Delegates to Implement Events

C# provides some important delegates to implement events. These delegates are useful under certain
situations. Some of these delegates are:

e EventHandler

e PropertyChangedEventHandler

EventHandler

EventHandler is a delegate defined in the System namespace. This delegate defines a method of void
return type.

1. Itsfirst parameter is of a System.Object type that refers to the instance (where the
event was defined) that raises the event.

2. Its second parameter is of an EventArgs type that holds event data. If the event
doesn’t have any data to pass, the second parameter is simply the value of
the EventArgs.Empty field. However, if it does have a value to pass, it will be
encapsulated into a derived type of EventArgs.

Syntax
namespace System

public delegate void EventHandler(object sender, EventArgs e);

}

Code Snippet

Listing 5-23. Handling & Raising an Event by using EventHandler

using System;

class Room

{
public event EventHandler Alert;

170

CHAPTER 5

private int Temperature;
public int Temperature

IMPLEMENTING DELEGATES & EVENTS

{
get { return this.Temperature; }
set
{
this.Temperature = value;
if (this.Temperature > 60)
if (Alert != null)
{
Alert(this, EventArgs.Empty);
}
}
}
}
}
class Program
{
static void Main(string[] args)
{
Room room = new Room();
room.Alert += OnAlert;
room.Temperature = 75;
}
private static void OnAlert(object sender, EventArgs e)
{
Room room = (Room)sender;
Console.WriteLine("Shutting down, Room temp = {0}", room.Temperature);
}
}
//0utput

Shutting down, Room temp = 75

Listing 5-24. Pass event data by using EventHandler

using System;

class HotelData : EventArgs

{
public string HotelName { get; set; }
public int TotalRooms { get; set; }

}

class Room

{

public event EventHandler Alert;

171

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

private int Temperature;
public int Temperature

{
get { return this.Temperature; }
set
{
this.Temperature = value;
if (this.Temperature > 60)
if (Alert != null)
{
HotelData data = new HotelData
{
HotelName = "5 Star Hotel",
TotalRooms = 450
};
//Pass event data
Alert(this, data);
}
}
}
}
}
class Program
{
static void Main(string[] args)
{
Room room = new Room();
room.Alert += OnAlert;
room.Temperature = 75;
}
private static void OnAlert(object sender, EventArgs e)
{
Room room = (Room)sender;
HotelData data = (HotelData)e;
Console.WriteLine("Shutting down, Room temp = {0}", room.Temperature);
Console.WritelLine("{0} has total {1} rooms", data.HotelName, data.TotalRooms);
}
}
//0utput

Shutting down, Room temp = 75
5 Star Hotel has total 450 rooms

172

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

PropertyChangedEventHandler

PropertyChangedEventHandler is a delegate defined in the System.ComponentModel namespace. It is used
with event to refer a method that will invoke whenever a Property is changed on a component.

Syntax

public delegate void PropertyChangedEventHandler(
object sender,
PropertyChangedEventArgs e

PropertyChanged event uses a PropertyChangedEventHandler delegate in the INotifyPropertyChanged
interface. Class, which implements the INotifyPropertyChanged interface, must define the event definition
PropertyChanged.

Code Snippet

Listing 5-25. Implement INotifyPropertyChanged

using System.ComponentModel;
using System;

public class Person : INotifyPropertyChanged
{

private string name;
// Declare the event
public event PropertyChangedEventHandler PropertyChanged;

public Person()

{
}
public Person(string value)
{
this.name = value;
}
public string PersonName
{
get { return name; }
set
{
name = value;
// Call OnPropertyChanged whenever the property is updated
OnPropertyChanged("PersonName");
}
}

// Create the OnPropertyChanged method to raise the event
protected void OnPropertyChanged(string name)

{
PropertyChangedEventHandler handler = PropertyChanged;

173

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

if (handler != null)

handler(this, new PropertyChangedEventArgs(name));

}
}
}
class Program
{
static void Main(string[] args)
{
Person person = new Person();
person.PropertyChanged += OnPropertyChanged;
person.PersonName = "Ali";
}
private static void OnPropertyChanged(object sender, PropertyChangedEventArgs e)
{
Person person = (Person)sender;
Console.WriteLine("Property [{0}] has a new value = [{1}]",
e.PropertyName, person.PersonName);
}
}
//0utput

Property [PersonName] has a new value = [Ali]

Advantages of Events

1. Eventencapsulates a delegate; it avoids overwriting of a method reference by
restricting the use of assignment = operator.

2. Unlike delegate, event cannot be invoked outside the class, which makes sure
event will only invoke when a certain codition satisfies.

Summary

e Delegates are function pointers. They store the reference of method(s) inside a
delegate object.

e Delegate can be called anywhere in code to invoke method(s).
e Action delegate stores the reference of a method(s) that doesn’t return a value.
e Func delegate stores the reference of a method(s) that does return a value.

e Predicate delegate stores the reference of a method(s) that takes one input parameter
and returns a bool value.

174

CHAPTER 5 * IMPLEMENTING DELEGATES & EVENTS

e Covariance in delegate is applied on a method’s return type.
e Contravariance in delegate is applied on a method’s input parameter.
e Lambda expression is used to create an anonymous method.

e Eventencapsulates a delegate and executes referred methods when a certain
condition satisfies.

Code Challenges
Challengel: Student Report Card Application

Write an application that handles a student report card. The application shall save the marks of computer
science, math and english. Each subject has a total of 50 marks. If a student obtains at least 75/150 marks, an
event will trigger and show a congratulation message on passing the exam. Otherwise, it will display an “F”
grade.

Practice Exam Questions

Challenge 1: Invoke an event if a person’s name is changed

Create a class Person which has a property “Name”. Your task is to invoke an event that checks if a person’s
name has changed or not and assign a new value to a person name.

Question 1

Suppose you're writing a class that needs a delegate who can refer a method(s) of two input string
parameters and return an integer value. Choose the right delegate from the following options.

A)
Action<int, string, string>

B)

Func<string, string, int>

9
Predicate<int, string, string>

D)
EventArgs<int, string, string>

Question 2

You are implementing a method that creates an instance of a class named Person. The Person class contains
a public event named Die. The following code segment defines the Die event:

Public event EventHandler Die;

175

CHAPTER 5 © IMPLEMENTING DELEGATES & EVENTS

You need to create an event handler for the Die event by using a lambda expression.

A)
Person person = new Person();
person.Die = (s, e) => { /*Method Body*/};

B)
Person person = new Person();
person.Die -= (s, e) => { /*Method Body*/};

)
Person person = new Person();
person.Die += (s, e) => { /*Method Body*/};

D)
Person person = new Person();
person.Die += () => { /*Method Body*/};

Question 3

Suppose you're writing a method that has one input string parameter and it returns True if the value of the
string input parameter is in upper case. Which of the following delegate(s) will you use to refer this method?

A) Action<bool, string>
B) Func<bool, string>
C) Predicate<string>

D) EventHandler

Answers
1. B
2. C
3. C

176

CHAPTER 6

Deep Dive into LINQ

LINQ is a feature of C# introduced in .NET 3.5. It lets you work with different types of data and provides an
easy and powerful way to write and maintain queries.
In this chapter, we will meet the following objectives:

1. Understand LINQ
Understand LINQ Operators
Understand LINQ Syntaxes
Working with LINQ Queries

A

Working with LINQ to XML

Introduction to LINQ

LINQ (Language Integrated Query) is a way to query different types of data sources that support
IEnumerable<T> or IQueryable<T>. It offers an easy and elegant way to access or manipulate data from a
database object, XML document, and in-memory objects.

Why we use LINQ

LINQ usually is more important than other query structures due to its way of working with different data
sources. According to MSDN:

Queries are usually expressed in a specialized query language. Different languages have
been developed over time for the various types of data sources, for example SQL for
relational databases and XQuery for XML. Therefore, developers have had to learn a new
query language for each type of data source or data format that they must support. LINQ
simplifies this situation by offering a consistent model for working with data across various
kinds of data sources and formats. In a LINQ query, you are always working with objects.
You use the same basic coding patterns to query and transform data in XML documents,
SQL databases, ADO.NET Datasets, .NET collections, and any other format for which a
LINQ provider is available.

© Ali Asad and Hamza Ali 2017 177
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_6

CHAPTER 6 * DEEP DIVE INTO LINQ

Types of LINQ

LINQ operates with a different data source and, due to its working with these data sources, it is classified into
the following types:

LINQ to Object

LINQ to Object provides the support for interaction with in-memory .NET objects that are implemented by
an IEnumerable<T> interface. We will use LINQ to object for explanation of LINQ queries.

LINQ to Entities

LINQ to Entities provides the support for interaction with a relational database using an ADO.NET Entity
Framework. It's more flexible than LINQ to SQL, but complex. It facilitates different data providers, such as
Oracle, My SQL, MS SQL, etc.

LINQ to Dataset

LINQ to Dataset provides the support for interaction with an in-memory cache of data in an easy and
faster way.

LINQ to SQL

LINQ to SQL, also known as DLINQ, provides the support for interaction with a relation database as objects.

LINQ to XML

LINQ to XML, also known as XLINQ, provides the support for interaction with XML documents, i.e., to load
XML documents, and to perform queries like read, filter, modify, add node, etc., in XML data.

Parallel LINQ

Parallel LINQ, also known as PLINQ, provides the support for Parallel working of LINQ.
We will use LINQ to Object to elaborate the topic “Working with LINQ Queries” and for explicit
elaboration of “LINQ to XML’ as a topic.

Understanding LINQ Operators

LINQ Operators are actually a set of extension methods. These operators form the LINQ pattern. These
operators offer flexibility to query data, such as filtering of data, sorting, etc.
The following LINQ query Operators we will discuss:

1. Filtering Operator
2. Projection Operator

3. Joining Operator

178

CHAPTER 6 * DEEP DIVE INTO LINQ

4. Grouping Operator
5. Partition Operator
6. Aggregation

In this topic, we will understand the purpose of these operators in LINQ.

Filtering Operator

Filtering Operator is used to filter a collection or sequence of data based on the predicate or some particular
condition. We will discuss the following Filtering operator in this chapter:

Table 6-1. Filtering Operator

Operator Description Syntax

Where Filter data based on predicate or condition Where

Projection Operator

Projection Operator is used when an object is transformed into a new form based on some condition or not.
We will discuss the following Projection operator in this chapter:

Table 6-2. Projection Operator

Operator Description Syntax

Select Select an obtained result from a data source Select

Joining Operator

Joining Operator is used to join two or more sequences or collections based on some key and produce a
result. We will discuss the following Joining operator in this chapter:

Table 6-3. joining Operator

Operator Description Syntax

Join Join sequence on the basis of a matching key join..in..on.equals

179

CHAPTER 6 * DEEP DIVE INTO LINQ

Grouping Operator

Grouping Operator is used to organize elements based on a given key. We will discuss the following
Grouping operator in this chapter:

Table 6-4. Grouping Operator

Operator Description Syntax
GroupBy Return a sequence of items in groups as an group.....by <or> group...by..into
IGroup<key,element> <or>
GroupBy(<predicate>)

Note GroupBy and ToLookup both are Grouping operators and are supported by Query and Method Syntax,
except ToLookup() which is just supported in Method Syntax. Query Syntax is discussed in the next topic.

Partition Operator

Partition Operator is used to split up the collection or sequence into two parts and return the remaining part
(record) left by the implication of these partition operators. We will discuss the following Partition operator
in this chapter:

Table 6-5. Partition Operator

Operator Description Syntax

Skip Skip the supplied number of records and return Skip<T>(<count>)
the remaining ones.

Take Take the supplied number of records and skip the = Take<T>(<count>)
remaining ones.

Aggregation

Aggregation means applying aggregate functions on LINQ. Aggregate function is a function that computes a
query and returns a single value. We will discuss the following Aggregate function in this chapter:

Table 6-6. Aggregate Functions

Operator Description Syntax

Average Take the average of a numeric collection. Average<T>(<param>)
Count Count the number of elements in a collection. Count<T>(<param>)
Max Return the highest value from the collection of numeric values. Max<T>(<param>)
Min Return the highest value from the collection of numeric values. Min<T>(<param>)
Sum Compute the sum of numeric values in a collection. Sum<T>(<param>)

180

CHAPTER 6 * DEEP DIVE INTO LINQ

The use of these operators is defined in the “Working with LINQ Queries” topic.

Understand LINQ Syntax

LINQ provides different ways to interact with data sources to query them. It facilitates SQL developers to
interact with different data sources for query using C# by giving them LINQ Query syntax and also facilitates
C# developers who don’t have a strong background in SQL to query the data by giving them the facility of
LINQ Method Syntax.

These two ways or syntaxes of LINQ query are:

1. Method Syntax
2. Query Syntax

These two syntaxes of LINQ query are semantically identical but it is assumed that writing a query using
Query syntax is easier and simpler.

Method Syntax

LINQ provides Method Syntax to interact with different data sources to query them. Basically, it uses
extension methods to query data. It is also known as Lambda Syntax Query, as the extension method uses
lambda syntax for predicate. It is also called Fluent or Method Extension Syntax.

Syntax
result=DataSource.Operator(<lambda expression>);
OR
result=DataSource.Operator(<lambda expression>).Operator(<optionals);

where result must be of a type of returned data. You can also use var type when you are unsure about the
returned data type.

Note Method Syntax is also called Fluent Syntax because it allows a series of extension methods to call.

Listing 6-1 shows the Method Syntax example.
Code Snippet

Let’s take an example of a collection of fruits as:

Listing 6-1. Array of fruits

string[] fruits = new string[]

{
"Apple","Mango","Strawberry","Date",
"Banana","Avocado","Cherry","Grape",
"Guava", "Melon","Orange","Tomato"

};

181

CHAPTER 6 * DEEP DIVE INTO LINQ

Now we want to get fruits whose name starts with “A” Therefore, we make a query on fruits (data source)
to get the required result.

LINQ Operator (Extension Method)

r Y

Result of Query
A

Data Source Lambda Expression (Predicate)
A A

IEnumerable<string> result = fruits.Where(p => p.StartsWith("A")):;
Figure 6-1. Method Syntax Query

Now the result holds all the fruits whose names start with “A” As the query will return all fruits starting
with “A’ so it would be a collection of fruits, and variables receiving these collections must be of the same
type as the collection’s type, which is a collection of strings. We can also further apply another operator
(extension method) on the same query to count the number of fruits whose names started with “A”.

int fruitslength = fruits.Where(p => p.StartsWith("A")).Count();

The where operator filters the data source of fruits on the basis of the predicate provided (in where's
body) and gets all the fruits whose name started with “A” and, furthermore, Count() will count all the fruits
returned by Where() and it returns the number of counted fruits to the fruitsLength variable.

Query Syntax

LINQ provides another way to perform a query on different data sources, which is Query Syntax. It is the
same as using SQL for rational database. It is also known as Query Comprehension or Query Expression
Syntax.

Syntax
<Returned result’s Type> result = from <range variable> in Data Source

<Query Operators> <lambda expression>
<select or groupBy operator> <result>

It is same as query in SQL, with little difference. Query in this syntax always ends with a select or
group..by operator and starts with a from keyword.

Code Snippet

Let’s take the above example of fruits and perform the same scenarios with this type of query syntax.

182

CHAPTER 6 * DEEP DIVE INTO LINQ
To get all the fruits whose name started with “A’} a query with this type of syntax would be like:

Range Variable
4

Result Variable Data Source

| |

Enumerable<string> result = from p in fruitc
where p.StartsWith("A")

< select p;

R
Query Operators “ l Conditional Expression
Result

Figure 6-2. Query Syntax

where from p in fruits is the same as foreach (var p in fruits). Here p, which is the Result, will return and
store into the result variable.

Just as we did in Method Syntax for applying operator (extension method) further to filter out query, we
can also do the same on this type of syntax. Taking the same example of counting the number of fruits whose
name starts with “A’} the query would be like:

int result = (from p in fruits
where p.StartsWith("A")
select p).Count();

Working with LINQ Queries

In this topic, we will discuss LINQ queries in detail. We have seen so far the ways to interact with different
data sources. Now we will get to know more about LINQ queries and perform important LINQ operators to
query data.

C# Features to Support LINQ

Some features are added into C# that support LINQ. Some features are necessary to create a query while
some of them are to help you to create a query in a nice and easy way. These features are:

1. Implicitly Typed Variables
Object Initializers
Anonymous Types

Lambda Expressions

a o~ e n

Extension Methods

These are the language features that make LINQ possible. All the features are explained in earlier chapters.

183

CHAPTER 6 * DEEP DIVE INTO LINQ

Parts of Query Operation
When working with LINQ queries, it always has three steps or actions:
1. Obtain the Data Source
2. Create a Query
3. Execute the Query
Listing 6-2 shows these three actions or steps of LINQ query.

Code Snippet

Listing 6-2. Steps of a query

//1- First Step (Obtaining the Data Source)
string[] fruits = new string[]

"Apple","Mango","Strawberry","Date",
"Banana","Avocado","Cherry","Grape",

","Orange","Tomato"

"Guava", "Melon

};

//2- Second Step (Creation of Query)
var result = from p in fruits
select p;

//3-Third Step (Execution of Query)
foreach (var item in result)

{

Console.Writeline(item);
}
Explanation

As shown from the code, three pain parts or actions of LINQ query are expressed. The details of these steps
or actions are discussed below.

Data Source

In above code snippet, data source is an array which implicitly supports IEnumerable<T> so it can be
queried. For queryable, a data source must be in the memory; that’s why if there is an XML data source, then
it must be loaded into memory. The data source may be different, i.e., in-memory objects, database objects,
or XML data.

Creation of Query

The query tells the information to retrieve or to process whatever it needs to process from the data source.
The query can be written with a different type of syntax offered by C#. Different types of LINQ operators can
be performed in query to filter, sort, group, and shape data before it returns.

184

CHAPTER 6 * DEEP DIVE INTO LINQ

Query Execution

It is important to know that whenever a query is written, query execution is not done. The execution of query
varies depending on your choice. By default, the execution of query is deferred until you iterate over the
query variable, but you can force it to execute at the time of its creation.

Deferred Execution

The execution of a query when it is written is deferred by default and you cannot get the result of a query
until you iterate over the query variable or perform aggregate methods (Max(), Min() and etc) or extension
methods (ToList(), ToArray() and etc) to get the result. This concept is called deferred execution of query.
Listing 6-3 shows this concept:

Listing 6-3. Deferred Execution

class Person

{
public int ID { get; set; }
public string Name { get; set; }
public string Address { get; set; }
public decimal Salary { get; set; }

List<Person> persons = new List<Person>()

{

new Person() { ID=1,Name="Ali Asad"},
new Person() { ID=5,Name="Hamza Ali"},

};

var query = from p in persons
select p;

int count = 0;
count = query.Count();//Counts 2 records

persons.Add(new Person() { ID = 3, Name = "John Snow" });
count = query.Count();//Count 3 records
Console.WriteLine(query);

The code is just counting the number of records. After a query is written, an operation of Count() is
performed to get some result and, at that time, it will return the number of records, but not at the time the
query is written. As there is addition in a data source after a query is written, so it should not have been
added in the count variable; but this does not happen in deferred execution, as you will not get results until
some kind of operation is performed. So again, after addition of a new element in data source, when Count()
is called, it will get the latest result.

Note Deferred Execution returns the latest data.

185

CHAPTER 6 * DEEP DIVE INTO LINQ

Immediate Execution

Immediate Execution of a query is the execution at the time a query is written. It forces the LINQ query to
execute and returns the results immediately. By performing aggregate method/methods or calling ToList<T>
or ToArray<T> (extension methods) on a query, you can force it to execute immediately. Immediate
Execution returns the most recent data (result). Listing 6-4 shows this concept:

Listing 6-4. Force Execution

List<Person> persons = new List<Person>()

{
new Person() { ID=1,Name="Ali Asad"},
new Person() { ID=5,Name="Hamza Ali"},

};

var query = (from p in persons
select p).TolList();

persons.Add(new Person() { ID = 3, Name = "John Snow" });

foreach (var item in query)

{
}

Console.Writeline(item.ID + "\t" + item.Name);

This code will not display the ID and Name of the last added person (person added after the query is
written) as there is an immediate execution of the query by performing the extension method (ToList()) on it
and, at that time, the written query performed on the persons variable contained just two records of Person,
so the query will return those two persons.

Note The execution of the Grouping Operator GroupBy() is deferred, whereas the execution of another
grouping operator ToLookup() is immediate.

LINQ Operators to Query Data

The overview of LINQ standard operators is discussed earlier. The detailed use of those operators in LINQ
queries are expressed below. Consider an example of Person with its ID, Name, Address, and Salary, and
initialize all the persons using Object Initializer.

Listing 6-5. Initialization of Person object

class Person

{
public int ID { get; set; }
public string Name { get; set; }
public string Address { get; set; }
public decimal Salary { get; set; }

186

CHAPTER 6 * DEEP DIVE INTO LINQ

List<Person> persons = new List<Person>()

{
new Person() { ID=1,Name="Ali Asad",Address="Pakistan",Salary=10000},
new Person() { ID=5,Name="Hamza Ali",Address="Pakistan",Salary=20000},
new Person() { ID=3,Name="John Snow",Address="Canada",Salary=15000},
new Person() { ID=2,Name="Lakhtey",Address="Pakistan",Salary=5000},
new Person() { ID=4,Name="Umar",Address="UK",Salary=25000},
new Person() { ID=6,Name="Mubashar",Address="Pakistan",Salary=8000},
};

Now we will see the implementation of LINQ operators in this scenario.

Filtering Operator

This Operator is used to filter data on the basis of some criteria. Listing 6-6 shows the example of this operator:

Listing 6-6. Filtering Operator

IEnumerable<Person> result = from p in persons
where p.Name.Length > 4

select p;
foreach (var item in result)
{
Console.WriteLine(item.ID + "\t" + item.Name + "\t" + item.Address);
}

Projection Operator

Projection Operator is used to Project a source or an element other than a source based on the transform
function. There are basically two Projection Operators: Select and SelectMany. Listing 6-7 and Listing 6-8
shows the example of these two operators:

Select

Listing 6-7. Select Operator

IEnumerable<string> result = from p in persons
where p.Name.Length > 4
select p.Name;

foreach (var name in result)

{
}

Console.WriteLine(name);

187

CHAPTER 6 * DEEP DIVE INTO LINQ

SelectMany

Listing 6-8. SelectMany Operator

var result = (from p in persons
where p.Name.Length > 4
select new
{
PersonID = p.ID,
PersonName = p.Name,
PersonAddress=p.Address

D;
foreach (var item in result)
{
Console.WritelLine(item.PersonID + "\t" + item.PersonName);
}

SelectMany query includes various properties which are not defined in any class and can retrieve the
result of a query by accessing these properties of anonymous type. This type of query is called Anonymous

Type Query.

Joining Operator
Joining Operator is used to join the sequences on the basis of matching keys. Take an example of a Class and
its students and the aim is to know which student is of which class.
Listing 6-9 shows the example of this operator:
Listing 6-9. Joining Operator

class Class

{
public int ClassID { get; set; }
public string ClassName { get; set; }

}

class Student

{
public int StudentID { get; set; }
public string StudentName { get; set; }
public int ClassID { get; set; }

}

List<Class> classes = new List<Class>();

classes.Add(new Class { ClassID = 1, ClassName = "BSCS" });
classes.Add(new Class { ClassID = 2, ClassName = "BSSE" });
classes.Add(new Class { ClassID = 3, ClassName = "BSIT" });

List<Student> students = new List<Student>();

students.Add(new Student { ClassID = 1, StudentID = 1, StudentName = "Hamza" });
students.Add(new Student { ClassID = 2, StudentID = 2, StudentName = "Zunaira" });
students.Add(new Student { ClassID = 1, StudentID = 3, StudentName = "Zeeshan" });

188

CHAPTER 6 * DEEP DIVE INTO LINQ

var result = (from std in students
join clas in classes on std.ClassID equals clas.ClassID
select new
{
_Student = std.StudentName,
_Class = clas.ClassName

1;
foreach (var item in result)
{
Console.WriteLine(item. Student + "\t" + item. Class);
}

Grouping Operator

Grouping Operator is used to organize a sequence of items in groups as an IGroup<key,element>. Take a
scenario to organize the students by address. Listing 6-10 shows this scenario:

Listing 6-10. Grouping Operator

var result = from p in persons
group p by p.Address;

foreach (var student in result)

{
Console.WriteLine("Address:" + student.Key);
foreach (var st in student)
{
Console.WritelLine(st.ID + "\t" + st.Name);
}
}

Partition Operator

Partition Operator is used to split up the collection or sequence into two parts and return the remaining one
left by the implication of one of these partition operators. It contains Take and Skip Operators. Listing 6-11
and Listing 6-12 show the example of these two operators:

Take

Listing 6-11. Take Operator

var result = (from p in persons
where p.Address.StartsWith("P")
select p).Take(2);

foreach (var item in result)

{
}

Console.Writeline(item.ID + "\t" + item.Name);

189

CHAPTER 6 * DEEP DIVE INTO LINQ

Skip

Listing 6-12. Skip Operator

var result = (from p in persons
where p.Address.StartsWith("P")
select p).Skip(2);

foreach (var item in result)

{

Console.Writeline(item.ID + "\t" + item.Name);
}
Aggregation

Aggregate function is used to compute a query and return a single value. The following Listing of some
aggregate functions are shown below:

Average

Listing 6-13. Average function

var averageSalary = (from p in persons
select p.Salary).Average();

Console.WritelLine(averageSalary);

Count

Listing 6-14. Count function

var noOfPersons = (from p in persons
where p.Address.StartsWith("P")
select p).Count();

Console.WritelLine(noOfPersons);

Max

Listing 6-15. Max function

var maximumSalary = (from p in persons
select p.Salary).Max();

Console.Writeline(maximumSalary);

190

CHAPTER 6 * DEEP DIVE INTO LINQ
Min
Listing 6-16. Min function
var minimumSalary = (from p in persons

select p.Salary).Min();

Console.WriteLine(minimumSalary);

LINQ to XML

To interact with XML in C#, XML query language is used (which is somehow complex) for developers to
perform XML-based operations to XML data (add node, delete node, etc.) in C#, i.e., using XmlDocument,
XmlWriter, and XmlReader classes. LINQ solves this type of problem as well as gives the support to interact
with XML data using LINQ. You can load the XML document into memory, query, and modify the document
in an easy way using LINQ. The main advantage of LINQ to XML is you can use the LINQ with XML in the
same manner as you use LINQ with object (LINQ to Object) or other providers.

The namespace System.Xml.Linq provides the necessary classes to interact with XML document/data
in C#. Some of the classes are:

1. XAttribute
XComment
XContainer
XDeclaration
XDocument
XElement

XNamespace

© N o a s~ N

XNode
9. XObject
10. XText

Some of these classes will be used in the next topics to show different operations performed in XML
data using LINQ.

Create XML data

LINQ to XML provides the facility to create an XML document in an easy way. You can use the above
mentioned classes to create the XML document/data, i.e., XElement (used to create the Element (Node) in
XML Document) or XAttribute (used to create the attribute of specific element). Listing 6-17 shows how to
create XML data using the provided classes along with the help of LINQ.

191

CHAPTER 6 * DEEP DIVE INTO LINQ

Code Snippet

Listing 6-17. Creation of XML data

XElement rootElement = new XElement("RootElement");
rootElement.Add(new XElement("Name", "Hamza Ali"));
rootElement.Add(new XElement("Age", "21"));
rootElement.Add(new XElement("Address", "Pakistan"));
rootElement.Save("Sample.xml");

XElement’s constructor is overloaded. It takes the name of the element as well as its value, etc., and you
can further add sub-element (as added in code) by using the root or parent element’s object.
The output of following code would look like:

<RootElement>
<Name>Hamza Ali</Name>
<Age>21</Age>
<Address>Pakistan</Address>
</RootElement>

Note You can also add nodes wherever you want in XML data, i.e., append a node at a specific location in
XML document.

Update XML data

Using LINQ to XML, you can update or delete a specific node or node value. Listing 6-18 shows how to
update or delete some specific node or its value.

Code Snippet

Listing 6-18. Updating of XML data

string xmlData = @" <RootElement>
<Name>Hamza Ali</Name>
<Age>21</Age>
<Address>Pakistan</Address>
</RootElement>";

XDocument document = new XDocument();
document = XDocument.Parse(xmlData);
//this will read the Name's Node if the age is 21
var readNode = (from p in document.Descendants()
where p.Element("Age").Value == "21"
select p.Element("Name")).FirstOrDefault();
Console.WriteLine("The person's Name having age 21 is: "+ readNode.Value);

//Update Name (Node) with value “Ali Asad”
readNode.ReplaceWith("Ali Asad");

Console.WriteLine("Node's Value is Updated");
//You can now save this Xml in Docuemnt/File
document.Save("Sample.xml");

192

CHAPTER 6 * DEEP DIVE INTO LINQ

//this will delete Address Node
document.Descendants().Where(s => s.Value == "Pakistan").Remove();
document.Save("Updated Sample 1.xml");

You can now read the saved XML document and will get updated contents.

Read XML data

We can also read the whole or specific XML data using LINQ. LINQ provides the lineate way to play with
XML. You can read XML data by reading the XML file or XML string.
For example, we have XML in string format:

string xmlData = @" <RootElement>
<Name>Hamza Ali</Name>
<Age>21</Age>
<Address>Pakistan</Address>
</RootElement>";

XML data from a file can also be read. The following code shows how to read XML data in string format
from a file:

//read xml from file

Stream xmlFromFile = File.Open("Sample.xml", FileMode.Open);
StreamReader reader = new StreamReader(xmlFromFile);

string xmlData= reader.ReadToEnd();

Listing 6-19 shows how to read the whole XML data using LINQ.

Code Snippet

Listing 6-19. Read XML data

string xmlData = @" <RootElement>
<Name>Hamza Ali</Name>
<Age>21</Age>
<Address>Pakistan</Address>
</RootElement>";

XDocument document = new XDocument();
document = XDocument.Parse(xmlData);
var xml = (from p in document.Elements()

select p).TolList();
foreach (var item in xml)

{
}

Console.WriteLine(item.ToString());

XML data in string format needs to be parsed in XML document so that LINQ can be applied to perform
further LINQ to XML operations. When the string formatted XML data is parsed, you can use its methods
or properties. Elements() method gets all the elements of an XML document (obtained by parsing string
formatted XML data).

193

CHAPTER 6 * DEEP DIVE INTO LINQ

We can also search through the XML data to find some specific element or element’s value or attribute
depending on our scenarios.
Listing 6-20 shows how to read some specific element (a Node) or element’s value.

Code Snippet

Listing 6-20. Read Specific Node

//this will read the Name's Node

var readNode = (from p in document.Descendants()
select p.Element("Name")).FirstOrDefault();

Console.Writeline(readNode);

//this query will read Name (Node)'s Value

var readNodeValue = (from p in document.Descendants()
select p.Element("Name").Value).FirstOrDefault();

Console.WritelLine(readNodeValue);

You can also read the XML on the basis of some criteria, i.e.,
//this will read the Name's Node if the age is 21
var readNode = (from p in document.Descendants()
where p.Element("Age").Value == "21"
select p.Element("Name")).FirstOrDefault();

Console.WritelLine(readNode);

Note In XML, there is a difference between Element and Node. A node can be an element node, an
attribute node, a text node, etc., whereas element is everything including its start and end.

Summary

1. LINQis a feature of C# that lets you work with different types of data and
provides an easy and powerful way to write and maintain queries.

2. LINQ Operators operate on sequences and offer flexibility to query data, such as
filtering of data, sorting, etc.

3. Aggregate functions are the functions that compute a query and return a single
value.

4. LINQ has two basic syntaxes: Query Syntax and Method Syntax.

5. LINQ query consists of three main actions or steps: Obtaining of Data Source,
Creation of Query and Execution of Query.

6. There are two types of execution of LINQ query: Deferred and Immediate.
7. LINQ to XML provides the facility to interact with XML data using LINQ query.

194

CHAPTER 6 * DEEP DIVE INTO LINQ

Code Challenges
Challenge 1: Perform CRUD Operation using LINQ to Object

Write a console application and make CRUD (Create, Read, Update and Delete) along with Search function.
Take Countries as a Data Source (with its properties) and perform LINQ queries on this.

Practice Exam Questions

Question 1

You have the following code:
int[] Marks = new int[] { 59, 24, 40, 100, 35, 75, 90 };

You need to get all the marks that are greater than 60. Which code snippet should you use?

Marks.Take(60);

B) var query = Marks.Where(s => s > 60);
C) var query = Marks.Any(s => s > 60);
D) var query = from p in Marks

where p > 60

select p;

A) var query

Question 2
In order to perform a query, a data source must be implemented by:
A) Enumerable or Queryable
B) Enumerable and Queryable
C) IEnumerable or IQueryable
D) IEnumerable and IQueryable

Question 3

You have developed an application which displays the list of students. You need to display 10 students at a
time, and so on. Which code snippet would you use for this purpose?

A) public static IEnumerable<int> Page(IEnumerable<int> source, int page, int pageSize)

return source.Skip((page - 1) * pageSize).Take(pageSize);

}
B) public static IEnumerable<int> Page(IEnumerable<int> source, int page, int pageSize)
{
return source.Skip((page - 1) * page).Take(pageSize);
}

195

CHAPTER 6 * DEEP DIVE INTO LINQ

C) public static IEnumerable<int> Page(IEnumerable<int> source, int page, int pageSize)

{
return source.Take((page - 1) * page).Skip(pageSize);
}
D) public static IEnumerable<int> Page(IEnumerable<int> source, int page, int pageSize)
{
return source.Take((page - 1) * pageSize).Skip(pageSize);
}
Answers
1. B&D
2. C
3. A

196

CHAPTER 7

Manage Object Life Cycle

In .NET, the “life cycle” of an object is the length of time between its creation and its destruction. In this
chapter, we'll learn:

1. Fundamentals of Object Life Cycle
2. Fundamentals of .NET Garbage Collection
3. Management of Unmanaged Resources

4, Management of Memory Leaks

Fundamentals of Object Life Cycle

The life cycle of an object is simply the time between when an object is created in memory and when it is
destroyed from it. Fundamentally, the life cycle of an object involves the following two steps:

1. Creation of an Object

2. Deletion of an Object

Creation of an Object

We use a new keyword to instantiate a new object.
Person 0bj = new Person();

A block of memory is allocated. This block of memory is big enough to hold the object (CLR handles the
allocation of memory for managed objects). The block of memory is converted to an object that is initialized
in memory (we can control this step by implementing a constructor).

Deletion of an Object

We use destruction to reclaim any resources used by that object. The object is cleaned up, for example, by
releasing any unmanaged resources used by the application, such as file handles and database connections
(we can control this step by implementing a destructor). The memory used by the object is reclaimed.
With Garbage Collection, the CLR handles the release of memory used by managed objects; however,
if we use unmanaged objects, we may need to manually release the memory by implementing IDisposable.

© Ali Asad and Hamza Ali 2017 197
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_7

CHAPTER 7 © MANAGE OBJECT LIFE CYCLE

Fundamentals of .NET Garbage Collection

In a .NET framework, garbage collection (GC) is an automatic memory management service that takes care
of the resource cleanup for all managed objects in the managed heap. It has the following benefits:

1. Enables developers to write applications with no worries about having to free
memory manually.

2. Allocates memory on a managed heap.
3. Enables memory safety.

4. Reclaims unused objects from memory.

When Garbage Collection Run

Garbage collection is a very expensive process; it doesn't run all the time, it runs when any of following
conditions is true:

1. When the system runs out of physical memory.
2. When the GC.Collect method is called manually.

3. When allocated objects in memory need more space.

Garbage Collector and Managed Heap

When garbage collector is initialized by CLR, it stores and manages objects by allocating a segment of
memory called managed heap.

Each managed process in .NET has a managed heap. Each thread in a process shares the same managed
heap to store and manage objects.

Garbage collector calls a win32 VirtualAlloc method to reserve a segment of memory in managed heap.
When garbage collector needs to release a segment of memory, it calls a win32 VirtualFree method.

When garbage collector runs, it removes dead objects and reclaims their memory; it compacts the live
objects together to preserve their locality and makes the managed heap smaller.

The volume of allocated memory objects and the amount of survived memory objects on a managed
memory heap determines how many times and for how long a garbage collector will run.

The work of garbage collector depends on how many objects are allocated on a managed heap. For
example, if fewer objects are allocated on a managed heap, the less work garbage collector has to do and vice
versa. It is wise to not allocate managed objects on a managed heap more than you need. For example, do
not allocate an array of 10 bytes when you only needed an array of 5 bytes. Heap is of two kinds: large object
heap and small object heap. A large object heap usually contains objects whose size is 85,000 bytes and
larger; these kinds of objects are usually arrays.

Generations

GC supports the concept of generations. It helps to organize short-lived and long-lived objects in a managed
heap. There are three generations:

1. Generation 0
2. Generation 1

3. Generation 2

198

CHAPTER 7 MANAGE OBJECT LIFE CYCLE

Generation 0

When an object is allocated on heap, it belongs to generation 0. It is the young generation, which contains
short-lived objects like temporary variables. If newly allocated objects are larger in size, they will go on the
large object heap in a generation 2 collection. GC occurs mostly in generation 0.

Generation 1

When objects survive from a garbage collection of generation 0, they go to generation 1. Objects in
generation 1 serve as a buffer between short-lived and long-lived objects.

Generation 2

When objects survive from a garbage collection of generation 1, they go to generation 2. Objects in
generation 2 serve as long-lived objects. If objects still survived in generation 2, they remain in generation 2
till they're alive.

Steps Involved in Garbage Collection

1. Suspend all managed threads except for the thread that triggered the garbage
collection.

2. Find alist of all live objects.
3. Remove dead objects and reclaim their memory.

4. Compact the survived objects and promote them to an older generation.

Manage Unmanaged Resource

In a .NET framework, garbage collector automatically handle the life cycle of a managed resource. But it
can't automatically handle the life cycle of an unmanaged resource; we must explicitly release resources
of unmanaged resources to handle them manually. Some common unmanaged resources are: open a file,
database connection, or network connection, etc.

Implement IDisposable to Release Unmanaged Resource

Types that use unmanaged resources must implement IDisposable to reclaim the unmanaged memory.
Dispose method is used to release the unmanaged resource from the memory. To prevent garbage collector
from calling an object’s finalizer (Destructor), dispose method uses GC.SuppressFinalize method.

Listing 7-1. IDisposable Definition

//Provides a mechanism for releasing unmanaged resources.
public interface IDisposable

{

void Dispose();

199

CHAPTER 7 © MANAGE OBJECT LIFE CYCLE

Dispose method can be called by following two ways:
1. try/finally block

2. using statement

Call Dispose Inside try/finally Block

To dispose an unmanaged resource, dispose method can be called inside a try/finally block.

Listing 7-2. Implement IDisposable

using System;
using System.IO;

class myClass : IDisposable

{
public StreamReader reader;
public void Dispose()
{
//Cleanup unmanaged resources
if (reader != null)
reader.Dispose();
GC.SuppressFinalize(this);
}
class Program
{
static void Main(string[] args)
{
myClass obj = null;
try
{
obj = new myClass();
}
finally
{
//call dispose method
obj.Dispose();
}
}
}

e StreamReader is a type that holds an unmanaged resource.

e GC.SuppressFinalize(this) prevents a finalizer from executing.

200

CHAPTER 7 MANAGE OBJECT LIFE CYCLE

Call Dispose Inside Using Statement

When a type implements an IDisposable interface, its dispose method must call anywhere in the code

to reclaim memory of an unmanaged resource. C# introduced using statement, which can only be used
with types that implement an IDisposable interface; it automatically calls Dispose method after the using
statement ends (when control goes out of the using block {}).

Syntax
using(type variableName = new type())
{

//T0DO:

Code Snippet

Listing 7-3. Implement IDisposable

using System;
using System.IO;

class myClass : IDisposable

{
public StreamReader reader;
public void Dispose()
{
//Cleanup unmanaged resources
if (reader != null)
reader.Dispose();
GC.SuppressFinalize(this);
Console.WriteLine("Disposed");
}
}
class Program
{
static void Main(string[] args)
{
using (myClass obj = new myClass())
}
Console.WriteLine("End");
}
}
//0utput
Disposed
End

201

CHAPTER 7 © MANAGE OBJECT LIFE CYCLE

Disposable Pattern

Disposable pattern is a standard way to implement IDisposable interface. For example, see the following
code snippet:

Code Snippet

Listing 7-4. Use Disposable Pattern

using System;
using System.IO;

class myClass : IDisposable
{
// Flag: Check if dispose method has already been called?
bool disposed = false;
// type uses unmanaged resource
StreamReader reader;

// Public implementation of Dispose pattern callable by consumers.
public void Dispose()

{
Dispose(true);
GC.SuppressFinalize(this);

// Protected implementation of Dispose pattern.
protected virtual void Dispose(bool disposing)

{
if (disposed)
return;

if (disposing)
{

if(reader != null)

reader.Dispose();

// Free any other managed objects here.
//

}

// Free any unmanaged objects here.
//
disposed = true;

}

//Finalizer a.k.a Destructor
~myClass()

Dispose(false);
}

202

CHAPTER 7 MANAGE OBJECT LIFE CYCLE

Explanation

The above code snippet (Listing 7-4) is the general pattern for implementing the dispose pattern. The bool
value disposed determines whether the dispose method was invoked. The parameterless Dispose method
is used to free unmanaged resources and to indicate that there is a finalizer it doesn't have to run. The
Dispose(bool) indicates whether the method was called from a parameterless Dispose method or it was
called from a finalizer (destructor).

Memory Leaks

If an application doesn't free the allocated resource on memory after it is finished using it, it will create a
memory leak because the same allocated memory is not being used by the application anymore.

If memory leaks aren't managed properly, the system will eventually run out of memory; consequently,
the system starts giving a slow response time and the user isn’t able to close the application. The only trick is
to reboot the computer, period.

Manage Memory Leaks

Memory leaks must be managed. The following are a few common causes of memory leaks:
1. Holding references to managed objects for a long time.
2. Unable to manage unmanaged resource.
3. Static reference.

4. Event with missing unsubscription.

Holding References to Managed Objects for a Long Time

If a managed object's references stay longer than necessary, performance counters can show a steady
increase in memory consumption and an OutOfMemoryException may arise. This may happen due to a
variable global scope, because GC can't destroy an active variable even though it’s not being used by an
application anymore.

The developer needs to handle it by telling how long a variable can hold a reference and destroying it
after it is no longer needed.

Unable to manage unmanaged resource

Garbage collector cannot release the memory of unmanaged resource. The developer needs to explicitly
release resources of unmanaged resources. To do that, the developer needs to implement an IDisposable
interface on types which use unmanage resource. Otherwise, memory leaks occur.

Static reference

If an object is referenced by a static field, then it will never be released. Such objects become long-lived. The
developer needs to make sure unnecessary static field objects get destroyed when they're finished being
used by the application.

203

CHAPTER 7 © MANAGE OBJECT LIFE CYCLE

Event with missing unsubscription

If an event handler is subscribed (+=), the publisher of the event holds a reference to the subscriber via the
event handler delegate (assuming the delegate is an instance method). If the publisher lives longer than the
subscriber, then it will keep the subscriber alive even when there are no other references to the subscriber.
This is the cause of memory leak when unsubscription of an event isn't defined.

If the developer unsubscribes (-=) from the event with an equal handler, it will remove the handler and
manage memory leaks.

Summary

¢ Life cycle of an object is simply a time between when an object is created in memory
and when it is destroyed from it.

e Garbage collection is an automatic memory management service that takes care of
the resource cleanup for all managed objects in the managed heap.

e Managed heap organizes objects into generations.
e Temporary and newly allocated objects are moved into generation 0.
e Generation 2 is a place where long-lived objects are compacted.

e Dispose method in IDisposable helps to release memory of an unmanaged resource.

Code Challenges
Challenge 1: Print Html Code of google.com

Write an application that gets the html code of www.google.com and print the html code on the console
screen. You have to control the lifetime of unmanaged resources and ensure that they are disposed properly
by using Disposable Pattern.

Practice Exam Questions

Question 1

An application includes an object that performs a long-running process. You need to ensure that the garbage
collector does not release the object's resources until the process completes.
Which garbage collector method should you use?

A) WaitForFullGCComplete()
B) WaitForFullGCApproach()
C) KeepAlive() // ans

D) WaitForPendingFinalizers()

204

http://www.google.com/

CHAPTER 7 MANAGE OBJECT LIFE CYCLE

Question 2

Suppose you're writing an application that uses unmanaged resource. You've implemented an IDisposable
interface to manage the memory of unmanaged resource. When implementing Dispose method, which
method should you use to prevent garbage collector from calling the object's finalizer?

A) GC.SuppressFinalize(this)//ans
B) GC.SuppressFinalize(true)

C) GC.WaitForFullGCApproach()
D) GC.WaitForPendingFinalizers()

Question 3

You're instantiating an unmanaged resource; which of the following statements would you use to instantiate
an unmanaged resource so that its Dispose method shall always call automatically?

A) if-else{}
B) try/catch
C) wusing()
D) switch()

Answers
1. C
2. A
3. C

205

CHAPTER 8

Multithreaded, Async & Parallel
Programming

In this chapter, we'll learn how to increase the performance of complicated and time-consuming operations
of an application by:

1. Working with Threads
2. Working with Task
3. Making UI Responsive (async and await)

4, Using Parallel Programming

Working with Threads

A thread controls the flow of an executable program. By default, a program has one thread called Main
Thread. Main Thread starts when control enters in the Main method and it terminates when Main method
returns.

If the execution of a program is controlled by more than one thread, it’s called a Multithreaded
Application. Such a program increases the performance and response time of an application. In C#, the
System.Threading namespace is used for creating and managing thread(s) in a multithreaded application.
A thread can be created by using System.Threading.Thread class. A thread can only be manipulated on a
method. For example, MainThread needs a Main method to control the flow of a progam.

In a C# progarm, a thread can be found in any of the following states:

Table 8-1. States of a Thread

State Explanation
Unstarted Thread is created but not started yet
Running Thread is executing a program

WaitSleepJoin Thread is blocked due to Wait, Sleep or Join method

Suspended Thread is suspended
Stopped Thread is stopped, either normally or aborted
© Ali Asad and Hamza Ali 2017 207

A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_8

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

System.Threading.Thread class contains the following common methods and properties, which are
helpful for managing a thread.

Table 8-2. Common Methods and Properties of Thread Class

Methods & Properties Explanation

Start() Changes state of thread to Running

Join() Wait for finishing a thread before executing calling thread
Sleep() Suspend a thread for specified number of miliseconds
Resume() Resume the execution of suspended thread

Abort() Terminates the execution of a thread

CurrentThread Returns a reference of the current thread

IsAlive Returns true if thread has not been terminated or aborted
IsBackground Get or set to indicate a thread is or is not a background thread
Name Get or set name of a thread

ThreadState Returns the current state of thread

Create and Start a Thread

Inside the MainThread, a thread can be initialized by using the Thread class of the System Threading
namespace. A thread can start its execution when a Thread.Start() method is called.

Syntax

Thread variableName = new Thread(new ThreadStart(voidMethod));

e ThreadStart is a delegate; it represents the method that executes on a Thread.

OR

Thread variableName = new Thread(voidMethod);

e We can also reference “voidMethod” to thread without explicitly using “ThreadStart
delegate”.

Code Snippet

Listing 8-1. Create and start a thread

class Program

{

static void MyThreadMethod()

{
Console.WriteLine("Hello From My Custom Thread");
for (int i = 0; i < 10; i++)

{
}

Console.Write("{o} ", i);

208

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine();
Console.WriteLine("Bye From My Custom Thread");

}

static void Main(string[] args)

{
//Instantiate a thread
Thread myThread = new Thread(new ThreadStart(MyThreadMethod));
//Start the execution of thread
myThread.Start();
//It's the part of Main Method
Console.WritelLine("Hello From Main Thread");

}

}
//0utput

Hello From Main Thread
Hello From My Custom Thread
123456789

Bye From My Custom Thread

Explanation

(In Listing 8-1) Main Thread initializes “mythread” and prints “Hello From Main Thread” While
“mythread” was being initialized, “myThread.Start()” changes its state to running and then executes
“MyThreadMethod()” “Hello From Main Thread” was part of MainThread and displayed on the screen first,
because “myThread” was taking time in changing its state to running.

Main Thread

initiate myThread

"'L myThread
print
‘Hello From Main Thread”
start()

execute
MyThreadMethod()

v Finish v
Wait for T e
myThread to Finish its job h .
End
End

Figure 8-1. Workflow of MainThread and myThread
209

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Thread.Join()

Thread.Join() method is used to keep the calling thread on wait until the called thread has not been stopped
or its execution is terminated.

Thread.Join() changes the state of the calling thread to ThreadState. WaitSleepjoin. Also, the Thread.
Join() cannot be invoked on a thread that is not in the ThreadState. Unstarted state.

Code Snippet

Listing 8-2. Use Thread.Join() to hold the execution of Main Thread

static void MyThreadMethod()
{

Console.WriteLine("Hello From My Custom Thread");
for (int i = 0; 1 < 10; i++)

{
}

Console.WriteLine();
Console.WriteLine("Bye From My Custom Thread");

Console.Write("{o} ", i);

}

static void Main(string[] args)
{
//Instantiate a thread
Thread myThread = new Thread(new ThreadStart(MyThreadMethod));

//Start the execution of thread
myThread.Start();

//Wait until mythread is terminated
myThread.Join();

//Everything else is part of Main Thread.
Console.WritelLine("Hello From Main Thread");

} //0utput
Hello From My Custom Thread
123456789
Bye From My Custom Thread
Hello From Main Thread

Explanation

(In Listing 8-2) This time, due to “mythread.Join()” method, MainThread (calling thread) will print “Hello
From Main Thread” last, because the “mythread.join()” method enforces MainThread (calling thread)
to wait until mythread is not terminated.

210

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Main Thread

initiate myThread

> myThread

start(

: execute

Wait for MyThreadMethod()
myThread to Finish its job s Finish

hd

mythread join(]: .

End
print
Hello From Main Thread” :

®
End

Figure 8-2. Join method lets MainThread wait until myThread finishes

Foreground & Background Thread

There are two kinds of threads in C#, i.e., Foreground thread and Background thread. By default, in C#
all threads are initialized as foreground thread. An application cannot terminate its execution until all its
foreground threads are completed.

A background thread is almost identical to a foreground thread. The one difference is that, if the
Main Thread has completed its execution and the background thread is the only thread remaining in the
application, the Main Thread will terminate the application and not wait for the background thread to
be completed.

Code Snippet

Listing 8-3. Create and start a foreground thread

static void MyThreadMethod()

{

Console.WriteLine("Hello From My Custom Thread");

for (int i = 0; 1 < 10; i++)

{

Console.Write("{o} ", i);

}

Console.WriteLine();

Console.WriteLine("Bye From My Custom Thread");
}

211

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

static void Main(string[] args)

{
//Instantiate a thread
Thread myThread = new Thread(new ThreadStart(MyThreadMethod));
//by default Isbackgrount value is always false
myThread.IsBackground = false;
//Start the execution of thread
myThread.Start();
//Everything else is part of Main Thread.
Console.WriteLine("Hello From Main Thread");

}

//0utput

Hello From Main Thread
Hello From My Custom Thread
123456789

Bye From My Custom Thread

Explanation

(In Listing 8-3) By default, the value of “Thread.IsBackground = false;’, which makes it a foreground thread.
Even though the MainThread has no other command after printing “Hello From Main Thread’; it won’t
terminate until the foreground thread “mythread” is completed or terminated.

Main Thread

initiate myThread (

[
>

myThread
print l
"Hello From Main Thread”
execute

MyThreadMethod()

start()

Finish
A Y
Wait for 1. ‘
myThread to Finish its job B

End

End

Figure 8-3. Main Thread cannot terminate until the foreground thread terminates

212

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-4. Create and start a background thread

static void MyThreadMethod()

{
Console.WritelLine("Hello From My Custom Thread");

for (int i = 0; 1 < 10; i++)

{
}

Console.WriteLine();
Console.WriteLine("Bye From My Custom Thread");

Console.Write("{0} ", i);

}

static void Main(string[] args)

{
//Instantiate a thread

Thread myThread = new Thread(new ThreadStart(MyThreadMethod));

//now the thread become a background thread
myThread.IsBackground = true;

//Start the execution of thread
myThread.Start();

//Everything else is part of Main Thread.
Console.WritelLine("Hello From Main Thread");

}
//0utput
Hello From Main Thread

Explanation

(In Listing 8-4) “Mythread” is now a background thread because its Background property value is set to
true, which means MainThread terminates soon after it (Mythread) executes its last command to print
“Hello From Main Thread” and won’t wait for “mythread” to be completed or terminated.

213

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Main Thread

initiate myThread

print
“Hello From Main Thread" Z
ii start()

End

Y

)

myThread

execute
MyThreadMethod()

A4

End

Figure 8-4. Main Thread won’t wait for background threads

Pass a Parameterize Method to a Thread

What if we want a parameterize method to be executed on a separate thread? To do this, we need a
“ParameterizedThreadStart” delegate inside the constructor of a Thread. It holds a reference of the method
that takes an object as an input.

Code Snippet

Listing 8-5. Pass an argument to a thread method

static void MyThreadMethod(object number)

{
int count = (int)number;
Console.WriteLine("Hello From My Custom Thread");
for (int i = 0; 1 < count; i++)
{
Console.Write("{o} ", i);
}
Console.WriteLine();
Console.WriteLine("Bye From My Custom Thread");
}
static void Main(string[] args)
{

//Instantiate a thread
Thread myThread = new Thread(
new ParameterizedThreadStart(MyThreadMethod));

//Start the execution of thread
myThread.Start(5);

214

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//Everything else is part of Main Thread.
Console.WriteLine("Hello From Main Thread");

}
//0utput
Hello From Main Thread
Hello From My Custom Thread

12314
Bye From My Custom Thread

Explanation

“ParameterizedThreadStart” is a delegate; it holds a reference of a method inside the Thread’s constructor
that takes an object as an input.

“Mythread.Start(5),” starts the execution of mythread and also passes “5” value as an object input to
“MyThreadMethod’”.

Thread.Sleep(milliseconds)
It is used to suspend the execution of a current thread for a specified number of milliseconds.

Code Snippet

Listing 8-6. Block the execution of a thread for a specified period of time

static void MyThreadMethod()

{
Console.WriteLine("Start of MyThread");
for (int i = 0; 1 < 5; i++)
{
//suspend the thread for 100 milliseconds
Thread.Sleep(100);
Console.Write("{o} ", i);
}
Console.WriteLine();
Console.WritelLine("End of MyThread");
}

static void Main(string[] args)

{

Console.Writeline("Start of Main Thread");

//Instantiate a thread
Thread myThread = new Thread(new ThreadStart(MyThreadMethod));

//Start the execution of thread
myThread.Start();

//Main Thread wait until mythread terminated
myThread.Join();

215

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine("Main Method");
for (int i = 0; 1 < 5; i++)

{
//Suspend the thread for 100 milliseconds
Thread.Sleep(100);
Console.Write("{0} ", 1);

}

Console.WriteLine();
Console.WriteLine("End of Main Thread");

}
//0utput
Start of Main Thread
Start of MyThread
1234
End of MyThread
Main Method
1234
End of Main Thread

ThreadPriority

Threadpriority defines how much CPU time a thread will have for execution. When a thread is created,
initially it is assigned with Normal priority. A thread can be assigned with any of the following priorities:

Table 8-3. Thread Priority Enums

Priority Explanation

High Thread will schedule before threads with any priority
AboveNormal Thread will schedule before Threads with Normal priority
Normal Will schedule before Threads with BelowNormal priority
BelowNormal Thread will schedule before Threads with Lowest priority
Lowest Will schedule after Threads with BelowNormal priority
Code Snippet

Listing 8-7. Prioritize a thread
static bool stop = false;

static void Main()

{

Thread threadl = new Thread(new ThreadStart(myMethod));
thread1.Name = "Thread 1";
threadl.Priority = ThreadPriority.Lowest;

216

}

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Thread thread2 = new Thread(new ThreadStart(myMethod));
thread2.Name = "Thread 2";
thread2.Priority = ThreadPriority.Highest;

Thread thread3 = new Thread(new ThreadStart(myMethod));
thread3.Name = "Thread 3";
thread3.Priority = ThreadPriority.BelowNormal;

thread1.Start();
thread2.Start();
thread3.Start();

Thread.Sleep(10000);
stop = true;

private static void myMethod()

{

}

//Get Name of Current Thread

string threadName = Thread.CurrentThread.Name.ToString();

//Get Priority of Current Thread

string threadPriority = Thread.CurrentThread.Priority.ToString();

uint count = 0;

while(stop != true)
{

}

Console.WritelLine("{0,-11} with {1,11} priority " +
"has a count = {2,13}", Thread.CurrentThread.Name,
Thread.CurrentThread.Priority.ToString(),
count);

count++;

//0utput
Thread 3 with BelowNormal Priority has a count = 3990463114

Thread 2 with AboveNormal Priority has a count

4151716090

Thread 1 with Normal Priority has a count = 4139585342

Explanation

The above example (Listing 8-7) shows the CPU time of a thread depends upon its priority. In the example,
Thread 2 has a priority above the others, hence it increments more count value by using more CPU time.
While Thread 3 has the least priority, hence it incremenents count value less than the other threads.

217

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

ThreadStatic

ThreadStatic is an attribute used on top of a static field to make its value unique (local) for each thread.

Code Snippet

Listing 8-8. Use ThreadStatic

using System;
using System.Threading;

class Program

{
[ThreadStatic]
static int _count = 0;
static void Main()
{
Thread threadA = new Thread(() =>
{
for (int i = 0; 1 < 10; i++)
{
Console.WriteLine("ThreadA count = {0} ", _count++);
}
D;
Thread threadB = new Thread(() =>
{
for (int i = 0; 1 < 10; i++)
{
Console.Writeline("ThreadB count = {0} ", _count++);
}
D;
threadA.Start();
threadB.Start();
}
}
//0utput

ThreadA _count =
ThreadA _count =
ThreadA count =
ThreadA count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadB _count =
ThreadB _count =

P OWVWOoOO~NOUVIASWNEREO

218

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

ThreadB _count =
ThreadB _count =
ThreadB _count =
ThreadB _count =
ThreadB _count =
ThreadB _count =
ThreadB _count =
ThreadB _count =

O oo~NOYUVT B W N

Explanation

In the above code snippet (Listing 8-8), both threads have their unique local values of _count. Both
threads have incremented the value of _count 10times. The end result isn’t 19, because each thread has
incremented the value of'its local copy of the _count variable.

Main Thread

_count0

initiate myThread

hreadA

> t
_count0
nitiate myThread ..[threadB
| [_counto :

start()

start()

increment _count value

increment _count value for 10x times
for 10x times ‘] h 4
®

,J_L End
Wait for

threadA & threadB

End

Figure 8-5. Each thread has its own copy of the _count variable

Code Snippet

Listing 8-9. Share a common resource to multiple threads

using System;
using System.Threading;

class Program

{

static int _count = 0;

219

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

static void Main()

Thread threadA = new Thread(() =>

{
for (int i = 0; 1 < 10; i++)
{
Console.Writeline("ThreadA count = {0} ", _count++);
}
D;
Thread threadB = new Thread(() =>
{
for (int i = 0; 1 < 10; i++)
{
Console.WriteLine("ThreadB count = {0} ", _count++);
}
D;

threadA.Start();
threadB.Start();

}

}

//0utput

ThreadA count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadA count =
ThreadA count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadA _count =
ThreadB _count =
ThreadB _count = 11
ThreadB _count = 12
ThreadB _count = 13
ThreadB _count = 14
ThreadB _count = 15
ThreadB _count = 16
ThreadB _count = 17
ThreadB _count = 18
ThreadB _count = 19

P OWoo~NOUVIT S~ WNEREO

Explanation

In above code snippet (Listing 8-9), the _count variable didn’t mark with the “ThreadStatic” attribute, hence
both threads shared the same _count variable. When one thread increments the value of _count, it affects
the value of the _count variable which is used in the other thread.

220

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Main Thread

_count0 [« 3
i initiate myThread
L threadA
initiate myThread

_ threadB
,l start()

start()

Y
increment _count value

increment _count value for 10x times
for 10x times ¥
®
‘J_L End
Wait for

threadA & threadB

End

Figure 8-6. Each thread share a common _count

Thread Pool

The cost of instantiating a managed thread is higher than reusing a free thread. In .NET, a thread pool is
helpful to reuse the free threads. A thread pool is a collection of background threads created by a system
and are available to perform any task when required.

When a program requires an extra thread, it is more efficient to use available free threads from a thread
pool because it can save the cost of creating a thread. And when a thread completes its execution, it can go
back to the threadpool so other programs can reuse the same thread again.

.NET has implemented its own definition of thread pool through the ThreadPool class. It has a method,
QueueUserWorklItem, which helps to queue the execution of available threads in a thread pool.

Code Snippet

Listing 8-10. Reuse a thread from ThreadPool

using System;
using System.Threading;

class Program

{

static void Main()

{
// Queue the thread.

ThreadPool.QueueUserWorkItem(new WaitCallback(ThreadProc));

221

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine("Hello From Main Thread.");

// The thread pool uses background threads, its important
// to keep main thread busy otherwise program will terminate
// before the background thread complete its execution

Console.ReadlLine(); //Wait for Enter
Console.WriteLine("Hello Again from Main Thread.");

// Queue the thread with Lambda
ThreadPool.QueueUserWorkItem((s) =>
{
//s = state
//no value is assign to s
//so s is null
Console.WriteLine("Hi I'm another free thread from thread pool");

};

Console.ReadLine(); //Wait for Enter
}

// This thread procedure performs the task.
static void ThreadProc(Object stateInfo)

{
// No state object was passed to QueueUserWorkItem, so
// stateInfo is null.
Console.WriteLine("Hello from the thread pool.");
}
}
//0utput

Hello From Main Thread.
Hello from the thread pool.

Hello Again from Main Thread.
Hi I'm another free thread from thread pool.
Explanation

e WaitCallback is a delegate that represents a callback method to be executed by a
thread pool thread. The method that it represents takes an object.

¢ ThreadPool.QueueUserWorkItem queues an available background thread for
execution.

e Console.ReadLine keeps the main thread on wait until the user presses “Enter”.

222

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Limitation of Thread Pool
e Itis hard to tell when a thread of a threadpool has finished its execution.

e There is no “Start” method, so we cannot tell when a thread of a thread pool has
started its execution because it is being managed by the system.

e Itcan’t manage a thread which returns a value.

Thread Pool
Request for Free Thread w

—

L Free Background Thread
ThreadPool.QueueUserWorkitem() ft

2,595 48 4

\Ji’“‘-———_____/'/

give available Thread

03

o

5

55
S

ZH
Recycle thread back to

thread pool DoWork

)

e

Figure 8-7. Lifecycle of threads of thread-pool

Working with Tasks

Task is an important part of the Task Parallel Library. It is a lightweight object which asynchronously
manages the unit of work. Task doesn’t create new threads. Instead it efficiently manages the threads of a
threadpool. Tasks are executed by TaskScheduler, which queues tasks onto threads.

Task provides the following powerful features over thread and threadpool.

1. Task allows you to return a result.
2. Itgives better programmatical control to run and wait for a task.

3. Itreduces the switching time among multiple threads.

223

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

4. Tt gives the ability to chain multiple tasks together and it can execute each task
one after the other by using ContinueWith().

5. Itcan create a parent/child relationship when one task is started from

another task.

6. Task can cancel its execution by using cancellation tokens.

7. Taskleaves the CLR from the overhead of creating more threads; instead it
implicitly uses the thread from threadpool.

8. Asynchronous implementation is easy in task, by using “async” and “await”

keywords.

9. Taskwaits for all of the provided Task objects to complete execution.

Create and Run a Task

To create a task that doesn’t return a value, we use a Task class of System.Threading. Tasks namespace.

It contains some important methods and properties which are helpful to manage task operation.

Table 8-4. Common Methods and Properties of Task Class

Methods & Properties Explanation

Run() Returns a Task that queues the work to run on ThreadPool
Start() Starts a Task

Wait() Wait for the specified task to complete its execution
WaitAll() Wait for all provided task objects to complete execution
WaitAny() Wait for any provided task objects to complete execution
ContinueWith() Create a chain of tasks that run one after another

Status Get the status of current task

IsCanceled Get a bool value to determine if a task is canceled
IsCompleted Get a bool value to determine if a task is completed
IsFaulted Gets if the Task is completed due to an unhandled exception.
Factory Provide factory method to create and configure a Task

Task is an important part of asynchronous programming and it executes on a thread pool thread.
Usually, a lambda expression is used to specify the work that the Task has to perform.

224

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Syntax
Task mytask = new Task(actionMethod);
e actionMethod is a method that has a return type of void and takes no input

parameter; in other words, there is an “Action” delegate in the parameter of the Task
constructor.

e Task has a total of 8 overloaded constructors, but usually we work with the first
overloaded constructor that has an “Action” delegate in its input parameter.

Code Snippet

Listing 8-11. Create and start a Task

using System;
using System.Threading.Tasks;

class Program

{
static void Main()
{
//initialize mytask and assign
//a unit of work in form of 'myMethod()'
Task myTask = new Task(myMethod);
myTask.Start();// Start the execution of mytask
myTask.Wait(); //Wait until mytask finish its job
//It's the part of Main Method
Console.WriteLine("Bye From Main Thread");
}
private static void myMethod()
{
Console.WriteLine("Hello From My Task");
for (int i = 0; 1 < 10; i++)
{
Console.Write("{o} ", i);
}
Console.WriteLine();
Console.WriteLine("Bye From My Task");
}
}
//0utput

Hello From My Task
123456789
Bye From My Task
Bye From Main Thread

225

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Explanation

We know Task performs on the background threads of a thread pool. Therefore (in Listing 8-11), it’s
important to write a “wait()” method, otherwise the program will shut down as soon the Main Thread
finishes its exeuction.

Code Snippet

Listing 8-12. Reuse a Task by using Task.Factory.StartNew

using System;
using System.Threading.Tasks;

class Program

{
static void Main()
{
//initialize and Start mytask and assign
//a unit of work in the body of lambda exp
Task mytask = Task.Factory.StartNew(new Action(myMethod));
mytask.Wait(); //Wait until mytask finish its job
//It's the part of Main Method
Console.WriteLine("Hello From Main Thread");
}
static void myMethod()
{
Console.WritelLine("Hello From My Task");
for (int i = 0; 1 < 10; i++)
{
Console.Write("{o} ", i);
}
Console.WriteLine();
Console.WritelLine("Bye From My Task");
}
}
//0utput

Hello From My Task
123456789

Bye From My Task
Hello From Main Thread

Explanation

(In Listing 8-12) Create a task and start it immediately by calling the StartNew method. In .NET 4.0 it is
preferable to use Task.Factory.StartNew for creating and starting a task because it saves performance cost,
whereas Task(...).Start() consumes more performance cost for creating and starting a task.

226

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snipppet

Listing 8-13. Reuse a task by using Task.Run

using System;
using System.Threading.Tasks;

class Program

{
static void Main()
{
//initialize and Run mytask and assign
//a unit of work in form of 'myMethod()'
Task mytask = Task.Run(new Action(myMethod));
mytask.Wait(); //Wait until mytask finish its job
//It’s the part of Main Method
Console.WritelLine("Hello From Main Thread");
}
private static void myMethod()
{
Console.WriteLine("Hello From My Task");
for (int i = 0; 1 < 10; i++)
{
Console.Write("{o} ", i);
}
Console.WriteLine();
Console.WritelLine("Bye From My Task");
}
}
//0utput

Hello From My Task
123456789
Bye From My Task
Bye From Main Thread

Explanation

(In Listing 8-13) Task.Run() returns and runs a task by assigning a unit of work in the form of a method
(“myMethod”). In .NET 4.5, it is preferable to use Task.Run because it manages Task more efficiently than
Task.Factory.StartNew.

227

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-14. Use Lambda Expression to use Task.Run

using System;
using System.Threading.Tasks;

class Program

{
static void Main()
{
//initialize and Run mytask and assign
//a unit of work in the body of lambda exp
Task myTask = Task.Run(()=»
{
Console.WritelLine("Hello From My Task");
for (int i = 0; i < 10; i++)
{
Console.Write("{o} ", i);
}
Console.Writeline();
Console.WritelLine("Bye From My Task");
b;
myTask.Wait(); //Wait until mytask finish its job
//It's the part of Main Method
Console.WriteLine("Hello From Main Thread");
}
}
//0utput

Hello From My Task
123456789
Bye From My Task

Bye From Main Thread

Explanation

(In Listing 8-14) ()=>{}lambda expression is used to assign an anonymous method to Task.Run(). myTask
will then execute the anonymous method on a separate task.

Note Most commonly, lambda expression is used to assign a unity of work in Task.Run.

Create and Run a Task<Result>

Task<Result> is used with such asynchronous operations that return a value. Task<Result> class is found in
the System.ThreadingTask namespace and it inherits from Task class.

228

CHAPTER 8 = MULTITHREADED, ASYNC & PARALLEL PROGRAMMING
Syntax
Task<TResult> mytask = new Task<TResult>(funcMethod);
e funcMethod is a method that has a return type of TResult type and takes no input

parameter; in other words, there is a “Func<TResult>" delegate in the parameter of
Task constructor.

Code Snippet

Listing 8-15. Get avalue from a method by using Task<T>

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task<int> myTask = new Task<int>(myMethod);
myTask.Start(); //start myTask
Console.WriteLine("Hello from Main Thread");
//Wait the main thread until myTask is finished
//and returns the value from myTask operation (myMethod)
int i = myTask.Result;
Console.WritelLine("myTask has a return value = {0}", i);
Console.WriteLine("Bye From Main Thread");
}
static int myMethod()
{
Console.WriteLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;
}
}//0utput

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

229

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Explanation
e Task<int> tells the task operation to return an integer value.

¢ myTask.Result; is a property that returns a value when the task gets completed and
blocks the execution of a calling thread (in this case, its main thread) until the task
finishes its execution.

Code Snippet

Listing 8-16. Use Task<T>.Factory.StartNew to return a value from a Task method

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task<int> myTask = Task<ints.Factory.StartNew<int>(myMethod);
Console.WritelLine("Hello from Main Thread");
//Wait the main thread until myTask is finished
//and returns the value from myTask operation (myMethod)
int i = myTask.Result;
Console.WriteLine("myTask has a return value = {0}", i);
Console.WriteLine("Bye From Main Thread");
}
static int myMethod()
{
Console.WriteLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;
}
}
//0utput

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

Explanation

(In Listing 8-16) Create a Task<T> and start it immediately by calling the StartNew method. In .NET 4.0 it
is preferable to use Task<T>.Factory.StartNew for creating and starting a task because it saves performance
cost, whereas Task<T>(...).Start() consumes more performance cost for creating and starting a task.

230

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet
Listing 8-17. Use Task.Run<int> to retun a value from Task’s method

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task<inty> myTask = Task.Run<ints>(new Func<ints(myMethod));
Console.WritelLine("Hello from Main Thread");
//Wait for the main thread until myTask is finished
//and return the value from myTask operation (myMethod)
int i = myTask.Result;
Console.WritelLine("myTask has a return value = {0}", i);
Console.WritelLine("Bye From Main Thread");
}
static int myMethod()
{
Console.WriteLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;
}
}
//0utput

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

Explanation

¢ Task.Run<int>() takes a Func<int> delegate to reference a method that returns an
integer value. This method gets executed by a task and a value gets returned by using
the Result property.

Code Snippet

Listing 8-18. Use Lambda Expression to return a value from a Task’s method

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
231

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

static void Main()

{
Task<int> myTask = Task.Run<int>(()=»>

{

Console.WriteLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;

b;

Console.WritelLine("Hello from Main Thread");

//Wait for the main thread until myTask is finished
//and return the value from myTask operation
int i = myTask.Result;

Console.WriteLine("myTask has a return value = {0}", i);
Console.WriteLine("Bye From Main Thread");

}

//0utput

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

Explanation

(In Listing 8-18) Lambda expression can be used to define a unit of work for Task<int>. And, inside lambda
expression, its return value must match with the type of Task<T>.

Code Snippet

Listing 8-19. Use var & Task.Run<T> with Lambda Expression to return a value from Task’s method

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
var myTask = Task.Run<int>(()=»
{
Console.WritelLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;
b;

232

}

//0utput

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine("Hello from Main Thread");

//Wait for the main thread until myTask is finished
//and return the value from myTask operation
int i = myTask.Result;

Console.WritelLine("myTask has a return value = {0}", i);
Console.WriteLine("Bye From Main Thread");

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

Explanation

In the above code snippet (Listing 8-19) Task<int> didn't define; instead, var keyword is used. Var keyword detects
the type of Task<T> by looking at the type of Task<T> written on the right side (which in this case is Task<int>).

Code Snippet

Listing 8-20. Use var & Task.Run with Lambda Expression to return a value from Task's method

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{

static void Main()

{

var myTask = Task.Run(()=»

{
Console.WriteLine("Hello from myTask<int>");
Thread.Sleep(1000);
return 10;

b;

Console.WritelLine("Hello from Main Thread");
//Wait for the main thread until myTask is finished
//and return the value from myTask operation

int i = myTask.Result;

Console.WriteLine("myTask has a return value = {0}", i);
Console.WriteLine("Bye From Main Thread");

233

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//0utput

Hello from Main Thread

Hello from myTask<int>

myTask has a return value = 10
Bye From Main Thread

Explanation

In the above code snippet (Listing 8-20) Task<int> didn't define on both sides. Instead, var keyword is used.
Var keyword detects the type of Task<T> by looking in the return value of lambda expression.

Wait for One or More Task

Tasks asynchronously runs on a thread pool thread. Thread pool contains background threads, so when task
is running, the main thread may terminate the application before the task is finished. To synchronize the
execution of the main thread and the asynchronous tasks, we use a Wait method.

Wait method blocks the execution of a calling thread until the execution of a specified task has
completed.

The following are important wait methods which help synchronize a main thread with Tasks.

1. Task.Wait()
Task.Wait(milliseconds)
Task.WaitAll()
Task.WaitAll(milliseconds)

LA

Task.WaitAny

Task.Wait()

To wait for a single task to complete, you can call its Task.Wait method. It blocks the calling thread until the
specified task completes its execution.

Code Snippet

Listing 8-21. Use Task.Wait to hold the execution of Main Thread

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{ Task myTask = Task.Run(() =>
{ Thread.Sleep(1000);
b Console.WriteLine("Task completed after 1 Sec");
5

234

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine("Hello From Main Thread");
myTask.Wait();// wait until myTask get completed

Console.WriteLine("Bye From Main Thread");

}

//0utput

Hello From Main Thread
Task completed after 1 Sec
Bye From Main Thread

Task.Wait(milliseconds)

Task.Wait(milliseconds) method blocks the execution of a calling thread until the specified task finishes or a
timeout interval elapses.

Code Snippet

Listing 8-22. Use Task.Wait(millisec) to wait the Main Thread for a specific time

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task myTask = Task.Run(() =>
{
//Wait for 2 Sec
Thread.Sleep(2000);
Console.WritelLine("myTask completed after 2 Sec");
D;
Task myTask2 = Task.Run(() =>
{
//Wait for half sec
Thread.Sleep(500);
Console.WriteLine("myTask2 completed after half Sec");
D;
myTask.Wait(1000);// wait for 1 sec
Console.WriteLine("Hello from Main Thread");
myTask2.Wait(1000);// wait for 1 sec
Console.WriteLine("Hello from Main Thread, again");
Console.WriteLine("By From Main Thread");
}
}

235

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//0utput

myTask2 completed after half Sec
Hello from Main Thread

Hello from Main Thread, again

By From Main Thread

Explanation

¢ myTask.Wait(1000) blocks the execution for 1 second; myTask didn’t complete its
execution in a given time, hence myTask was terminated.

¢ myTask2.Wait(1000) also blocks the execution for 1 second, but myTask2 completes
its execution before 1 second. Hence, the main thread resumes its execution as soon
myTask2 completed.

Task.WaitAll()

Task.WaitAll method blocks the execution of a calling thread until all the specified tasks complete their
execution. WaitAll is a static method of Task class.

All task objects must be referenced in a single array and WaitAll method needs that array to block the
execution of a calling thread until all tasks specified in an array get completed.

Code Snippet

Listing 8-23. Use Task.WaitAll to wait for Main Thread until all specified Tasks are executing

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task tski = Task.Run(() =>
{
Thread.Sleep(100);
Console.WriteLine("tsk1l completed");
D;
Task tsk2 = Task.Run(() =>
{
Thread.Sleep(500);
Console.WriteLine("tsk2 completed");
D;
Task tsk3 = Task.Run(() =>
{
Thread.Sleep(1000);
Console.WriteLine("tsk3 completed");
D;

236

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//Store reference of all tasks in an array of Task
Task[] allTasks = { tsk1, tsk2, tsk3 };

//Wait for all tasks to complete
Task.WaitAll(allTasks);

Console.WritelLine("By from main thread");

}

//0utput

tsk1l completed

tsk2 completed

tsk3 completed

By from main 0 thread

Task.WaitAll(task]], milliseconds)

Task.WaitAll(task(], milliseconds) method blocks the execution of a calling thread until all the specified tasks
finish or a timeout interval elapses.

Code Snippet
Listing 8-24. Use Task.WaitAll(task[], millisec) to wait for MainThread until all specified are executing
for a specified period of time

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task tski = Task.Run(() =>
{
Thread.Sleep(500);
Console.Writeline("tsk1 completed");
D;
Task tsk2 = Task.Run(() =>
{
Thread.Sleep(2000);
Console.WritelLine("tsk2 completed");
D;
Task tsk3 = Task.Run(() =>
{

Thread.Sleep(1000);

237

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WritelLine("tsk3 completed");
D;

//Store reference of all task in an array of Task
Task[] allTasks = { tski, tsk2, tsk3 };

//Wait for all tasks to complete
Task.WaitAll(allTasks, 1200);

Console.WriteLine("By from main thread");

}
//0utput

tsk1l completed
tsk3 completed
By from main thread

Task.WaitAny()

Task.WaitAny is a static method of Task class. It blocks the execution of a calling thread until any first task
from a collection of tasks completes its execution.

Code Snippet

Listing 8-25. Use Task.WaitAny to wait for a Main Thread, until any first thread completes its execution

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task tski = Task.Run(() =>
{
Thread.Sleep(1000);
Console.Writeline("tsk1 completed");
D;
Task tsk2 = Task.Run(() =>
{
Thread.Sleep(500);
Console.WritelLine("tsk2 completed");
D;
Task tsk3 = Task.Run(() =>
{

238

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Thread.Sleep(2000);
Console.Writeline("tsk3 completed");

1

//Store reference of all task in an array of Task
Task[] allTasks = { tski, tsk2, tsk3 };

//Wait for all tasks to complete
Task.WaitAny(allTasks);

Console.WriteLine("By from main thread");

}

//0utput

Tsk2 completed

By from main thread

Task.WaitAny(task]], milliseconds)

Task.WaitAny(task[], milliseconds) method blocks the execution of a calling thread until any first task from a
collection of tasks finishes or a timeout interval elapses.

Code Snippet

Listing 8-26. Use Task.WaitAny(task(], sec) to wait for a main thread for a specified time period

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task tski = Task.Run(() =>
{
Thread.Sleep(500);
Console.Writeline("tsk1 completed");
D;
Task tsk2 = Task.Run(() =>
{
Thread.Sleep(2000);
Console.WritelLine("tsk2 completed");
D;
Task tsk3 = Task.Run(() =>
{

239

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Thread.Sleep(1000);
Console.WritelLine("tsk3 completed");

1

//Store reference of all task in an array of Task
Task[] allTasks = { tski, tsk2, tsk3 };

//Wait for all tasks to complete
Task.WaitAny(allTasks, 1200);

Console.WriteLine("By from main thread");

}

//0utput

tsk1l completed

By from main thread

Chain Multiple Tasks with Continuations

Task.ContinueWith method is used to make chains of multiple tasks. Each next task in a chain will not be
scheduled for execution until the current task has completed successfully, faulted due to an unhandled
exception, or exited out early due to being canceled.

Code Snippet

Listing 8-27. Use Task.ContinueWith to chain one task after another.

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task tski = Task.Run(() =>
{
Thread.Sleep(100);
Console.WriteLine("tsk1");
D;
//Run tsk2 as soon tski get completed
Task tsk2 = tski.ContinueWith((t) =>
Thread.Sleep(500);
Console.WritelLine("tsk2");
D;
tsk2.Wait();
}

240

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

}
//0utput
tsk1
tsk2

Explanation

e tskl.ContinueWith((t)=>{..}); execute and return a new task when tsk1 has
completed its execution. Here “t” in the input parameter of ContinueWith method is
the reference of tskl. This “t” can be useable in the body of a lambda expression. For
example, if tsk1 returns a value, by using “t” the return value can be useable in the
body of alambda expression.

e Tsk2.Wait(); shall wait for tsk2 to complete its execution, and its execution shall start
when tskl completes its execution. Therefore, tsk2.Wait() shall wait for all the tasks
that were chained with it.

Use Task<TResult> with Continuation

Task<TResult> is a task that returns a value of the type TResult. Task<TResult> can be useable with
continuation. Such a Task<TResult> returns a value so that a new task in a chain can use it.

Code Snippet

Listing 8-28. Return aresult of first task in the body of a second task by using Task.Result;

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{

static void Main()

{

Task<string> tski = Task.Run(() =>

{
Thread.Sleep(100);
return "Ali";

1

//Run tsk2 as soon tski get completed
Task tsk2 = tski.ContinueWith((t) =>

{
//Wait for tsk1 and return its value
string name = t.Result;

Console.WritelLine("My Name is: {0}", name);

B;

tsk2.Wait();

241

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

}
//0utput

My Name is: Ali

Explanation

t.Result; wait for tskl to complete its execution and return the value from it.

TaskContinuationOption

TaskContinuationOption is an enumeration that is used to specify when a task in a continuewith chain gets
executed. The following are some of the most commong enums for TaskContinuationOption:

OnlyOnFaulted Specifies that the continuation task should be scheduled only if its
antecedent threw an unhandled exception.

NotOnFaulted Specifies that the continuation task should be scheduled if its
antecedent doesn't throw an unhandled exception.

OnlyOnCanceled Specifies that the continuation should be scheduled only if
its antecedent was canceled. A task is canceled if its Task.Status property upon
completion is TaskStatus.Canceled.

NotOnCanceled Specifies that the continuation task should be scheduled if its
antecedent was not canceled.

OnlyOnRanToCompletion Specifies that the continuation task should be scheduled
if its antecedent ran to completion.

NotOnRanToCompletion Specifies that the continuation task should be scheduled
if its antecedent doesn't run to completion.

Code Snippet

Listing 8-29. Use TaskContinuationOption to run the chained task only if some condition satisfies

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Task<string> tski = Task.Run(() =>
{
throw new Exception();
Console.Writeline("tsk1 ran");
Thread.Sleep(100);
return "Ali";
D;

242

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Task tsk2 = tski.ContinueWith((t) =>
{

Console.WriteLine("tsk2 ran when tski threw an exception");
}» TaskContinuationOptions.OnlyOnFaulted);

tsk2.Wait();

}
//0utput

tsk2 ran when tski threws an exception

Explanation

In (Listing 8-29) the second parameter of tsk1.ContinueWith method (TaskContinuationOptions)
was specified with OnlyOnFaulted, which says, tsk2 can only run if tskl threw an unhandled exception,
otherwise it will skip the execution of tsk2.

Similarly, we can specify TaskContinuationOptions with other enums, i.e., OnlyOnCanceled,
NotOnFaulted, etc.

The returned Task will not be scheduled for execution until the current task has completed. If the
continuation criteria specified through the continuationOptions parameter are not met, the continuation
task will be canceled instead of scheduled.

Options for when the continuation is scheduled and how it behaves:

Nested Task

A nested task is just a Task instance that is created in the user delegate of another task. A child taskis a
nested task that is created with the AttachedToParent option. A task may create any number of child and/or
nested tasks, limited only by system resources. The following example shows a parent task that creates one
simple nested task.

Detached Child Task

Every nested task is by default a detached child task. It runs independently of its parent.

Code Snippet

Listing 8-30. Create nested task

using System;

using System.Threading;

using System.Threading.Tasks;
class Program

{

static void Main()

{

Task outer = Task.Run(() =>

{

Console.WriteLine("Hi I'm outer task ");
243

https://msdn.microsoft.com/en-us/library/system.threading.tasks.task(v=vs.110).aspx

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Task inner = Task.Run(() =>

{
Console.WritelLine("Hi I'm inner task");
Thread.Sleep(2000);
Console.WriteLine("By from inner task");
D;

Thread.Sleep(500);
Console.WriteLine("By from outer task");

b

outer.Wait();

}

//0utput

Hi I'm outer task
HI I'm inner task
By from outer task

Explanation

(Listing 8-30) We can create an inner task as much as we want. But inner and outer tasks will run
independantaly of each other. When an outer task completes its execution, it will move out and sync with the
main thread.

Child Task Attached to Parent

A nested child task can attach to its parent by using the AttachedToParent option. The parent task cannot
terminate its execution until all its attached child tasks complete their execution.

Code Snippet

Listing 8-31. Use AttachedToParent to create a nested child task

using System;

using System.Threading;

using System.Threading.Tasks;
class Program

{

static void Main()

{

Task outer = new Task(() =>

{

Console.Writeline("Hi I'm outer task ");

//AttachedToParent only available with new Task()
Task inner = new Task(() =>

244

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Console.WriteLine("HI I'm inner task");

Thread.Sleep(2000);

Console.WriteLine("By from inner task");
}, TaskCreationOptions.AttachedToParent);

inner.Start();

Thread.Sleep(500);
Console.WriteLine("By from outer task");

};

outer.Start();
outer.Wait();

}
//0utput

Hi I'm outer task
Hi I'm inner task
By from outer task
By from inner task

Explanation

(In Listing 8-31) It's important to not use “Task.Run()” while making a child task that depends on its parent.
In the above code snippet, a new nested task was created and it was attached to its parent by using the
“AttachedToParent” property as the second argument of “new task().”

Synchronization of Variables in Multithreading

In a multithreading enviroment, the same variable can be accessed by two or more threads. If the operation
performed on a shared variable is atomic or thread-safe, then it produces an accurate result. If the operation
is non-atomic or not thread-safe, then it produces inaccurate results.

In atomic operation, only a single thread at a time can execute a single statement and produce accurate
results; while, in a non-atomic operation, more than one thread is accessing and manipulating the value of
a shared variable, which produces an inaccurate result (for example, if one thread is reading a value and the
other thread at the same time is editing it).

Code Snippet

Listing 8-32. Multiple threads accessing the same resource “variable”

static void Main()

{
int num = 0;
int length = 500000;

//Run on separate thread of threadpool
Task tsk = Task.Run(() =>

{

for (int i = 0; i < length; i++)

245

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

num = num + 1;

}
};

//Run on Main Thread

for (int i = 0; i < length; i++)

{
}

tsk.Wait();
Console.WriteLine(num);

num = num - 1;

}
//0utput

-1500

Explanation

The above code snippet (Listing 8-32) gives inaccurate results because two threads are accessing

and manipulating the value of “num” at the same time. The statement “num = num + 1;” is actually a
combination of more than one statement; first it will read the current value of “num’, add 1 to its current
value, and assign it to “num”.

Imagine if Main thread read the value of num = 6 but the other thread read the value of num = 3. When
Main thread decrements the value of “num’, it becomes 5. But the other thread already read the value of
num = 3; when it increments it the value of num becomes “4’, which is entirely wrong because the other
thread must get the latest value of num and then increment it and the result should be “6” (The output of this
program might be different if you run it on your machine, because it depends on the execution cycle of CPU.)

Handle Synchronization of Variables in Multithreading

The following are three common ways to handle synchronization variables in a multithreaded enviroment.
1. Lock
2. Monitor

3. Interlock

lock(object)

Lock is a C# keyword; it prevents a thread from executing the same block of code that another thread is
executing. Such a block of code is called a locked code. Therefore, if a thread tries to enter a locked code, it
will wait until the object is released. The lock keyword calls Enter at the start of the block and Exit at the end
of the block.

The best practice is to use lock keyword with a private object, or with a private static object variable to
protect data common to all instances.

246

CHAPTER 8

Code Snippet

Listing 8-33. Use lock to thread-safe a shared resource

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

{
}
//0utput
0
Explanation
o lock(thislock){...} it will prevent other threads from manipulating the shared
memory, i.e., “n” When control goes out of the block, the shared memory becomes
useable for any thread.
o thislock is the same variable used in multiple threads, notifying other threads if
someone already used it to lock a block of code.
¢ Hence shared memory becomes thread-safe and the program gives an accurate result.
Monitor

Monitor class also ensures that no other thread can execute the same section of code or a shared memory

until it is being executed by its lock owner.

Code Snippet

Listing 8-34. Use Monitor.Enter to thread-safe a shared resource

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{
//This object is use to lock a block

private static object thislock = new object();

static void Main()

{
int num = 0;
int length = 500000;

//Run on separate thread of threadpool
Task tsk = Task.Run(() =>
{

for (int i = 0; i < length; i++)

247

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

{
//1lock the block of code
Monitor.Enter(thislock);
num = num + 1;
//unlock the locked code
Monitor.Exit(thislock);

}

1

//Run on Main Thread
for (int i = 0; i < length; i++)

{
//lock the block of code
Monitorx.Enter(thislock);
num = num - 1;
//unlock the locked code
Monitor.Exit(thislock);

}

tsk.Wait();
Console.WritelLine(num);

}
}
//0utput
0
Explanation
¢ Monitor.Enter or Monitor.TryEnter method is used to lock a block of code for other
threads and prevent other threads from executing it.
e Monitor.Exit method is used to unlock the locked code for another thread and allow
other threads to execute it.
Interlocked

Interlocked class is used to synchronize the access of shared memory objects among multiple threads.
Interlocked class provides the following useful operation on shared memory:

1. Increment and Decrement methods, used to increment or decrement a value of
variable.

2. Add and Read method, used to add an integer value to a variable or read a 64-bit
integer value as an atomic operation.

3. Exchange and CompareExchange methods, used to perform an atomic
exchange by returnning a value and replacing it with a new value, or it will be
contingent on the result of a comparison.

248

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-35. Use Interlocked to thread-safe a shared resource

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{

static void Main()

{
int num = 0;
int length = 500000;

//Run on separate thread of threadpool
Task tsk = Task.Run(() =>

{
for (int i = 0; i < length; i++)
{

Interlocked.Increment(ref num);

}
1

//Run on Main Thread
for (int i = 0; i < length; i++)

{
}

tsk.Wait();
Console.WriteLine(num);

Interlocked.Decrement(ref num);

}
//0utput
0

Explanation

¢ Interlocked.Increment takes the reference of a shared memory, i.e., “num” and
increments it by thread-safing it.

e Interlocked.Decrement takes the reference of a shared memory, i.e., “num” and
decrements it by thread-safing it.

Dead Lock

In a multithreaded enviroment, a dead lock may occur; it freezes the application because two or more
activities are waiting for each other to complete. Usually it occurs when a shared resource is locked by one
thread and another thread is waiting to access it.

249

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-36. Create a dead lock

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{

//used as lock objects
private static object thislockA = new object();
private static object thislockB = new object();

static void Main()

{

Task tski = Task.Run(() =>

{
lock(thislockA)

{
Console.Writeline("thislockA of tski");

lock(thislockB)

{
Console.Writeline("thislockB of tsk2");

Thread.Sleep(100);

}
1

Task tsk2 = Task.Run(() =>

{
lock (thislockB)

{
Console.WritelLine("thislockB of tsk2");

lock (thislockA)
{

Console.WriteLine("thislockA of tsk2");
Thread.Sleep(100);

}
1;

Task[] allTasks = { tsk1, tsk2 };
Task.WaitAll(allTasks); // Wait for all tasks

Console.WriteLine("Program executed succussfully");

250

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//0utput

thislockA of tsk1
thislockB of tsk2

/* Application Freezed */

Explanation

Here is how the application got frozen.
1. Tskl acquires lock “thislockA”.
2. Tsk2 acquires lock “thislockB”

3. Tskl attempts to acquire lock “thislockB’, but it is already held by Tsk2 and thus
Tsk1 blocks until “thislockB” is released.

4. Tsk2 attempts to acquire lock “thislockA’, but it is held by Tsk1 and thus Tsk2
blocks until “thislockA” is released.

At this point, both threads are blocked and will never wake up. Hence, the application froze.
To prevent an application from freezing, it’s important to use a lock statement carefully; otherwise, you
will shoot your own foot.

CancellationToken

CancellationToken propagates a cancel notification to operations like threads, thread pool work items, or task
objects.

Cancellation occurs when requesting a code calling the CancellationTokenSource.Cancel method, and
then the user delegate terminates the operation. However, an operation can be terminated:

1. by simply returning from the delegate;

2. by calling the CancellationTokenSource.Cancel method.
The following are general steps for implementing the cancellation model:

1. Instantiate a CancellationTokenSource.
Get a CancellationToken from CancellationTokenSource.Token property.
Pass the CancellationToken to each task or thread that listens for cancellation.

Provide a mechanism for each task or thread to respond to cancellation.

g N

Call the CancellationTokenSource.Cancel method to provide notification of
cancellation.

Code Snippet

Listing 8-37. Request a thread to cancel its execution

using System;
using System.Threading;
using System.Threading.Tasks;

class Program

{

251

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

static void Main()

{

//1 - Instantiate a cancellation token source
CancellationTokenSource source = new CancellationTokenSource();

//2 - Get token from CancellationTokenSource.Token property
CancellationToken token = source.Token;

//3 - Pass token to Task
Task tsk = Task.Run(()=>

{

Console.WriteLine("Hello from tsk");
while(true)
{

Thread.Sleep(1000);
Console.WriteLine("*");
if(token.IsCancellationRequested == true)

{

Console.WritelLine("Bye from tsk");
return;

}
}, token);
Console.WriteLine("Hello from main thread");

//Wait
Thread.Sleep(4000);

//4 - notify for cancellation
source.Cancel(); //IsCancellationRequested = true;

//Wait
Thread.Sleep(1000);

Console.WritelLine("Bye from main thread");

}
//0utput

Hello from main thread

Hello from tsk
*

*
*
*

252

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Bye from tsk
Bye from main thread

Explanation
e Tsk.Run() shall continue its operation until IsCancellationRequested becomes true.

¢ IsCancellationRequested becomes true when source.Cancel() method is called in
main thread after 4 seconds.

Making Ul Responsive

In any .NET GUI Application (Windows Form, WPE, ASP.NET, etc.), the User Interface (UI) becomes
unresponsive when a complex and time-consuming operation is executed during an event.

A UI (user-interface) thread manages the life cycle of UI controls (buttons, textbox, etc.), and it is
commonly used to handle user inputs and respond to user events.

Before we dive into the topic, we must do the following steps:

1. Create an empty C# Windows Form Project. (You can create any GUI App i.e.,
WPE, ASP.NET, etc.)

2. From toolbox, drag a button and a label to the main form.

3. Double click on the button to generate the code for the click event.

a2 Form1 - O X

label1

Figure 8-8. Drag button and label on empty windows form app

In the button click event, we simulated a time-consuming operation by using a Thread.Sleep method.

253

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Listing 8-38. Execute a time-consuming operation in a UI Thread

private void buttoni Click(object sender, EventArgs e)

{
//Wait for 5 seconds
Thread.Sleep(5000);
label1.Text = "Hello World";
}

When we run the above code and click buttonl, the application hangs up. Until the UI thread is busy in
executing time-consuming commands, it cannot respond to any additional user commands, for example,
dragging the application window and clicking on the close button, etc.

How to Make UI Responsive with Async and Await

In .NET Framework 4.5, async and await keywords were introduced. They make asynchronous programming
much simpler and provide a simpler way to make Ul responsive.

In order to make Ul responsive, it is essential to not execute complicated and time-consuming
operations on a Ul thread. Instead, these time-consuming operations must run on separate tasks,
controlled by async and await keywords. Doing this, the UI thread becomes free and available to respond
to any user input.

The following steps are essential to execute any method asynchronously:

1. The return type of an event-method doesn’t change. But the return type of a
normal method must change to Task<return_type>.

2. You must use the “async” keyword before the return_type/Task<return_type> of
any method.

3. You must use the “await” keyword when a method is called whose return type is
“Task/Task<T>".

Execute Click Event Asynchronously

It's important to figure out which commands are taking a longer time. Put those commands on a separate
method whose return type is Task/Task<int>.

Next, use the “async” keyword on its signature and write the “await” keyword before the method of type
“Task” is called.

Syntax

private async void buttoni Click(object sender, EventArgs e)

{

await DoComplicatedTaskAsync();

254

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-39. Use async and await on an event-method

private async void buttoni Click(object sender, EventArgs e)

{ label1.Text = "Hello World";
await DoComplicatedTaskAsync();
label1.Text = "Bye World";

}

private Task DoComplicatedTaskAsync()

{ Task task = Task.Run(() =>
{ Thread.Sleep(5000);

D;

return task;
}
Explanation

(Listing 8-39) The Ul thread will display “Hello World” on a label and wait until DoComplicatedTaskAsync()
is executing. Meanwhile, the UI thread remains responsive to any user input. Once
DoComplicatedTaskAsync() is completed, the UI thread will display “Bye World” on the label.

DoComplicatedTaskAsync() is a method that returns a task which runs a time-consuming operation.
The name of an async method, by convention, ends with an “Async” suffix.

async is used to qualify a method as an asynchronous method.

await is similar to Wait method, but it does not hang the Ul thread and it can return a value if a Task has
any value to return. It’s important to note that the await keyword cannot work in a method that is not marked
with an async keyword.

255

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Ul CODE

—_— await

async

CPU-bound
code

continue after
completion

Ul CODE

Figure 8-9. Workflow of async method

Execute Normal Method Asynchronously

In any normal method, it’s important to figure out which operations are time-consuming and execute them
on a separate task.

Code Snippet

Listing 8-40. Use async and await on a normal method

private async void buttoni Click(object sender, EventArgs e)

{
label1.Text = "Hello World";
await normal methodAsync();
label1.Text = "Bye World";
}
private async Task normal methodAsync()
{ await DoComplicatedTaskAsync();
}

256

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

private Task DoComplicatedTaskAsync()

{ Task task = Task.Run(() =>
{ Thread.Sleep(3000);
D;
return task;

}

Explanation

(Listing 8-39) The UI thread will display “Hello World” on labell and wait until normal_methodAsync()

is executing. Meanwhile, the UI thread remains responsive to any user input. normal_methodAsync is an
async method; it executes DoComplicatedTaskAsync on a separate task and waits for its completion. Once it
completes the execution, normal_methodAsync returns back to the click event where it was called. Then the
Ul thread displays “Bye World” on labell.

Important Points

normal_methodAsync() doesn’t return any value; use “Task” as a return type. When “async” is used with
normal methods, “void” cannot be used as a return type; we’ll use “Task” instead.
DoComplicatedTaskAsync() method used “Task” as its return type. Therefore, in its body, the method
must return an object of type “Task”.
normal_methodAsync and DoComplicatedTaskAsync Both methods have a return type of “Task”.
But in their body, only DoComplicatedTaskAsync method returns an object of the type “Task” because its
signature doesn’t mark with the “async” keyword.

Use Await to Get Value from Task<T>

Await keyword works like the Wait method, but it can also be used to get value from Task<T>.

Code Snippet

Listing 8-41. Use await to return a value from a Task<T> method

private async void buttoni Click(object sender, EventArgs e)

{
label1.Text = "Hello World";
int value = await DoComplicatedTaskAsync();
} label1.Text = "Bye World" + value.ToString();

private Task<ints DoComplicatedTaskAsync()

{

Task<inty task = Task.Run(() =>
{

257

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Thread.Sleep(5000);

return 15;
D;
return task;
}
Explanation

await keyword waits for DoComplicatedTaskAsync to complete. The method signature of
DoComplicatedTaskAsync has “Task<int>"; the method returns a task which returns a value “15” after
waiting for 5 seconds. Await keyword returns the value “15” from the task of DoComplicatedTaskAsync()
method. The UI thread will dispay “Bye World15” on labell.

Use Async Lambda

async lambda expression helps to create an anonymous async method. To use an async lambda expression,
we need delegate. Its return type depends on the Delegate type.

Syntax
(async () =>
{

await;

1;
Code Snippet

Listing 8-42. Use async lambda

private async void buttoni Click(object sender, EventArgs e)

{
label1.Text = "Hello World";
Func<Task> asynclLambda = (async () =>
{
await myWait(5000);
D;
await asynclLambda();
label1.Text = "Bye World";
}
private Task myWait(int milisec)
{
Task task = Task.Run(() =>
Thread.Sleep(milisec);
D;
return task;
}

258

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Explanation

(Listing 8-42) In the body of async lambda it is essential to use an await keyword. To run the async lambda
a delegate is required, such as Func<Task>. asynclambda delegate was called with an await keyword; until
asynclambda is executing, the Ul thread will wait and stay responsive.

Task.Delay(milisec)

Unlike Thread.Sleep, Task.Delay doesn’t block the current thread. Instead it makes a logical delay for a
specified period of time. Task.Delay is intended to run asynchronously. Await is used with Task.Delay
because it returns a Task.

Code Snippet

Listing 8-43. Use Task.Delay to hold the execution of a Task

private async void buttoni Click(object sender, EventArgs e)

{ label1.Text = "Hello World";
await Task.Delay(3000);
label1.Text = "Bye World";

}

Explanation

(In Listing 8-43) After 3 seconds, the Ul thread will display “Bye World” on labell.text but, meanwhile, it
stays responsive.

Prevent Application from Cross Threading

In a multithreaded enviroment, only a Ul thread can change the value of UI controls (button, label, textbox,
etc.). If another thread tries to change the value of a UI control, then cross threading exception will arise
because Runtime will not allow any thread to manipulate another thread data directly.

Listing 8-44. Cross threading example

private async buttoni Click(object sender, EventArgs e)

{
Task task = Task.Run(() =>
{
label1.Text = "Hello World";
Thread.Sleep(3000);
label1.Text = "Bye World";
D;
await task;
}

When the above code runs, an exception will arise which says, “Cross-thread operation not valid”.

259

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

this.BeginInvoke

BeginInvoke method is used to change values of UI control from other threads. It does it in a thready-safe
way. It requires a delegate; it tells which UI control needs to change its value.

Listing 8-45. Use lock to thread-safe a shared resource

private async void buttoni Click(object sender, EventArgs e)

{ Task task = Task.Run(() =>
{ this.BeginInvoke(new Action(() =>
label1.Text = "Hello";
N);
D;
} await task;

The value of labell.Text shall be changed to “Hello” and no exception will arise because it’s a thread-
safe operation.

Parallel Programming

In the modern era, computers and workstations have at least two or four cores that help multiple threads to
execute simultaneously. .NET provides easy ways to handle multiple threads on multiple cores.
In .NET, you can take advantage of parallelism by:

1. Concurrent Collection
2. Parallel.For & Parallel.Foreach
3. PLINQ

Concurrent Collection

In a multithreaded enviroment, multiple threads can access the same data at the same time to read/add/edit
it. Such data aren’t thread-safe and become vulnerable to multiple threads.

In C# we have Generic collections. These collections are type-safe, which means at compile time we
can make a collection of any type. But these collections are not thread-safe. They become vulnerable when
multiple threads can manipulate the same data at the same time.

Generic collections can also become thread-safe if they are used in a proper locking statement, but
locking the entire collection for the sake of adding/removing an item could be a big performance hit. NET
has its own thread-safe collection called Concurrent collection. It was introduced in .NET 4.0. It contains the
following thread-safe collections defined in the System.Collections.Concurrent namespace.

1. ConcurrentDictionary<K,V>: Thread-safe dictionary in key value pairs

2. ConcurrentQueue<T>: Thread-safe FIFO data structure

260

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

3. ConcurrentStack<T>: Thread-safe LIFO data structure
4. ConcurrentBag<T>: Thread-safe implementation of an unordered collection

5. BlockingCollection<T>: Provides a Classical Producer Consumer pattern
Code Snippet

Listing 8-46. Use generic collection in multiple threads

using System.Collections.Generic;
using System.Threading.Tasks;

class Program

{
static void Main()
{
Dictionary<int, int> dic = new Dictionary<int, int>();
Task tski = Task.Run(() =>
{
for(int i = 0; i < 100; it++)
{
dic.Add(i, i + 1);
}
D;
Task tsk2 = Task.Run(() =>
{
for (int i = 0; 1 < 100; i++)
{
dic.Add(i + 1, i);
}
D;
Task[] allTasks = { tski, tsk2 };
Task.WaitAll(allTasks); // Wait for all tasks
}
}
//0utput

/* System.AggregateException accur because 'an item with the same key has already been
added'. */

Explanation

(In Listing 8-46) Tsk1 and Tsk2 both tried to manipulate the key of dictionary, hence an error occurs.

261

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Code Snippet

Listing 8-47. Use Concurrent Collection to prevent multiple threads from accessing a resource at the
same time

using System.Collections.Concurrent;
using System.Threading.Tasks;

class Program

{

static void Main()

{
ConcurrentDictionary<int, int> dic =
new ConcurrentDictionary<int, int>();

Task tski = Task.Run(() =>
{

for(int i = 0; i < 100; it++)

{

}
B;

Task tsk2 = Task.Run(() =>
{

dic.TryAdd(i, i + 1);

for (int i = 0; 1 < 100; i++)

{
}

dic.TryAdd(i + 1, i);

1

Task[] allTasks = { tski, tsk2 };
Task.WaitAll(allTasks); // Wait for all tasks

System.Console.WritelLine("Program ran succussfully");

}
//0utput

Program ran succussfully

Explanation

ConcurrentDictionary<K,V> is a thread-safe collection; in the above code snippet, it prevents multiple
threads from working on the same key value. If another thread tried to add a new key value which was
already added by another thread, it would skip the iteration and move the control to the next iteration. This
way, no conflict would occur and hence the program would run succussfully.

262

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Similarly, there are other concurrent collections, like:

1. ConcurrentQueue<T>, it has Enque() method to enque an item and TryDeque()
method to remove and return the first item.

2. ConcurrentStack< T> it has Push() method to push an item and TryPop()
method to remove and return the last item.

3. ConcurrentBack<T> it has Add() method to add an item and TryTake() method
to remove and return the item.

But Generics are not thread-safe it's a programmer’s responsibility. Let’s say you have a list collecting
some objects. That list is shared amongst several threads; then it may work hazardously if two threads try
to access the List at the same point in time, like adding/removing/iterating items from the same list at the
same time.

Thread safety can be implemented with the help of locking the collection and other similar ways.

But locking the entire list for the sake of adding/removing an item could be a big performance hit for an
application based on the circumstances.

Parallel.For & Parallel.Foreach

Parallel.For and Parallel.Foreach are used in parallel programming to iterate statements over multiple
threads.

Parallel.For

Itis used to iterate a for loop upon multiple threads and processors. In most cases, Parallel.For loop is much
faster than a normal for loop.

Syntax

Parallel.For(fromInclusive, toExclusive, Action<int> body);

Code Snippet

Listing 8-48. Use Parallel.For

using System;
using System.Threading.Tasks;

class Program

{ static void Main()
{ Parallel.For(1, 5, (i) =>
{ Console.Writeline(i);
D;
}
}

263

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

//0utput

1

3

4

2

/* output will be different when you run the same code, because in a multithreaded
enviroment, the scheduler decides which thread should run first */

Parallel.Foreach

It is used to iterate a foreach loop upon multiple threads and processors. In most cases, Parallel.Foreach loop
is much faster than a normal foreach loop.

Syntax

Parallel.ForEach<T>(collection<T> data, Action<T> body);

Code Snippet

Listing 8-49. Use Parallel.Foreach

using System;
using System.Threading.Tasks;

class Program

{
static void Main()
{
int[] data = { 1, 2, 3, 4, 5 };
Parallel.ForEach<int>(data, (d) =>
{
Console.WritelLine(d);
1
}
}
//0utput
1
3
4
2
5

/* output will be different when you run the same code, because in a multithreaded
enviroment the scheduler decides which thread should run first */

264

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

PLINQ

PLINQ is the parallel version of LINQ. It means queries can be executed on multiple threads by partitioning
the data source into segments. Each segment executes on separate worker threads in parallel on multiple
processors. Usually, parallel execution significantly runs faster than sequential LINQ. However, parallelism
can slow down the execution on complicated queries.

It has the following common methods to help in parallelism:

1. AsParallel() Divide the data source in segments on multiple threads

2. AsSequential() Specify the query shall be executed sequentially
3. AsOrdered() Specify the query shall preserve the ordering of data
4. AsUnordered() Specity the query shall not preserve the ordering of data
5. ForAll() Process the result in parallel
Code Snippet

Listing 8-50. Run a LINQ query in parallel by using “AsParallel()”

using System;
using System.ling;

class Program

{
static void Main()
{
var data = Enumerable.Range(1, 50);
//split source in segments on multiple threads
//by using AsParalletl() with source 'data’
var pling = from d in data.AsParallel()
where d % 10 ==
select d;
foreach (var item in pling)
{
Console.Writeline(item);
}
}
}
//0utput
10
20
30
40
50

265

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Explanation

The above code snippet (Listing 8-50) tells how to make a sequential LINQ to a PLINQ by splitting the source
into segments on multiple threads by using the AsParallel() method. No doubt its speed is faster than a
sequential LINQ query.

Summary

¢ Monitor.Enter or Monitor.TryEnter method is used to lock a block of code for other
threads and prevent other threads from executing it.

e Athread controls the flow of an executable program.

e Bydefault, a program has one thread called Main Thread. Main Thread starts when
control enters in the Main method and it terminates when Main method returns.

e Application has two kinds of threads: Background Thread and Foreground Thread.

e Background thread doesn’t hold the main thread to finish its execution. If the main
thread completes its execution it will terminate the progam.

e Foreground thread does hold the main thread to terminate the progam until
foreground completes its execution.

e Threadpriority defines how much CPU time a thread will have for execution.

e ThreadStatic is an attribute used on top of a static field to make its value unique
(local) for each thread.

e Athread pool is a collection of background threads, created by a system and is
available to perform any task when required.

e Task doesn’t create new threads. Instead it efficiently manages threads of a
threadpool.

e Task.Run manages Task more efficiently than Task.Factory.StartNew.

¢ Task.ContinueWith method is used to run multiple Tasks in a chain only when a
specified condition satisfies.

e Lock s a C# keyword; it prevents a thread from executing the same block of code
that another thread is executing.

e CancellationToken propagates a notification that operations (threads, thread pool
work items, or task objects) should be canceled.

e UI (user-interface) thread manages the life cycle of UI controls (buttons, textbox,
etc.), and it is commonly used to handle user inputs and respond to user events.

e async and await keywords are used to make the UI of an application responsive.
e asynclambda expression helps to create an anonymous async method.

e Task.Delay doesn’t block the current thread. Instead it makes a logical delay for a
specified period of time. It is better than using Thread.Sleep for an asynchronous
operation.

¢ this.BeginInvoke method is used to send value to controls (button, textbox, etc.) of
Ul Threads.

266

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

e Concurrent Collections are thread-safe collections.

e Parallel.For and Parallel.Foreach are used to iterate loops upon multiple threads
and processors.

e PLINQ is the parallel version of LINQ. By using “AsParallel” method, LINQ query
divides its data source on multiple threads.

Code Challenges
Challenge 1: Develop a Windows Form Project to Display HTML

Develop a simple Windows Form Project in C# which gets the HTML of “google.com” and displays it on
alabel.
Application must have these UI Controls:

1. ATextbox to enter URL

2. AlLabel to display result

3. Abutton for downloading HTML and displaying it on a label
Your goals are:

1. The application must be responsive and use async and await.

2. Download the HTML of a URL and show it on a label.

Practice Exam Questions

Question 1

Suppose an application has a method name PrintAsterisk() that prints asterisks on a screen continuously.
The method runs on a Task separate from the user interface. The application includes the following code.
(Line numbers are included for reference only.)

01. static void PrintAsterisk(CancellationToken token)

02. {

03. while(!token.IsCancellationRequested)

04. {

05. Thread.Sleep(100);

06. Console.Write(" *");

07. }

08.

09. }

10. private static void Main()

1.

12. var tokenSource = new CancellationTokenSource();

13. var task = Task.Run(() => PrintAsterisk(tokenSource.Token));
14. Console.WriteLine("Press [Enter] to stop printing Asterisk");
15. Console.ReadLine();

16.

17. task.Wait();

18. }

267

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

You need to ensure that the application stop printing the Asterisk on screen when the user presses the
Enter key. Which code segment should you insert at line 16?

A) tokenSource.Token.Register(() => tokenSource.Cancel());
B) tokenSource.Cancel(); Ans
C) tokenSource.IsCancellationRequested = true;

D) tokenSource.Dispose();

Question 2

Suppose an application uses multiple asynchronous tasks to optimize performance. The application will
be deployed in a distributed environment. You need to get the result of an asynchronous task from a web
service.

The data will later be parsed by a separate task. Which code segment should you use?

A)
protected async void StartTask()

{
string result = await GetData();

}

public Task<string> GetData()
{

}

B)
protected async void StartTask()
{

string result = await GetData();

}

public async Task<string> GetData()
{

}
9

protected async void StartTask()

{
string result = GetData();

}

public Task<string> GetData()
{

}

268

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

D)
protected async void StartTask()

{
string result = async GetData();

}

public Task<string> GetData()
{

}

Question 3

Identify a correct way to implement locking.

A)
//lockthis, is a private static variable of type object.
lock (lockthis)

{
}
B)
lock (new object())

}

9)

lock ()
{

}

D)
lock (this)
{

}

269

CHAPTER 8 © MULTITHREADED, ASYNC & PARALLEL PROGRAMMING

Question 4

An application uses multiple asynchronous tasks to optimize performance. You create three tasks by using
the following code segment. (Line numbers are included for reference only.)

01. private void MultipleTasks()

02. |

03. Task[] tasks = new Task[]

04. {

05. Task.Run(()=>Thread.Sleep(2000)),
06. Task.Run(()=>Thread.Sleep(3000)),
07. Task.Run(()=>Thread.Sleep(1000)),
08. };

09.

10.

11. }

You need to ensure that the MultipleTasks () method waits until all three tasks complete before
continuing. Which code segment should you insert at line 09?
A) task.WaitFor(3);
B) tasksYield();
C) tasks.WaitForCompletion();
D) Task.WaitAll(tasks);

Question 5
Which of the following methods is used to run a LINQ query in parallel?
A) AsParallel();
B) RunParallel();
C) ToParallel();
D) Parallel();

Answers
1. B
2.
3. A
4. D
5 A

270

CHAPTER 9

Exception Handling and Validating
Application Input

Introduction to Exception

Exception is an unexpected error that occurs at runtime (when an application is running). Sometimes a
programmer doesn’t know what and which exception could occur at runtime. For example, the code is
reading a file but the file is missing from the location where it is read. It is accessing or reading data across
the network but the Internet is not available, or it is loading some kind of data in memory but the system
runs out of memory, etc. In all these cases, programmers write the code right but, due to unconditional
ways, an exception could occur.

If exceptions are not handled properly, they can break the execution of a running program. To handle
an exception, we write the suspicious code inside a try-catch block. When an exception is caught, its object
can be use to read the detail of an exception, for example, error message and exception Stack, etc.

In terms of programming, an exception is a C# class (System.Exception). A developer can
create a custom-exception by inheriting System. Exception class and can customize it accordingly.

A custom-exception is useful when a developer wants to provide his own error messages to C# code.

The following is a list of some common .NET exceptions that may occur at runtime.

e System.Exception, is either thrown by a system or a running application to report an
€error.

¢ InvalidOperationException, is thrown when the state of an object cannot invoke a
method or execute an expression.

e ArgumentException, is thrown when a method is invoked and one of its parameters
doesn’t meet the specification of a parameter.

¢ ArgumentNullException, is thrown when a method is invoked and one of its
paremeter arguments is null.

¢ ArgumentOutOfRangeException, is thrown when the value of an argument is
outside the range of values as defined by the type of the arguments of the invoked
method.

¢ NullReferenceException, is thrown when you try to use a reference which is not
initialized, or try to access a member of a type which is not initialized in memory.

e IndexOutOfRangeException, is thrown when an index of an array tries to access
something which is outside of the array’s range.

© Ali Asad and Hamza Ali 2017 271
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_9

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

e StackOverflowException, is thrown when the Stack has too many nested methods
and it cannot add more methods to execute it.

¢ OutOfMemoryException, is thrown when there is not enough memory to run a
program.

e ArithmeticException, is thrown when there is an error in an arithmetic operation.

e DivideByZeroException, is thrown when there is an attempt to divide an integral or
decimal value with zero.

e OverflowException, is thrown when an arithmetic operation returns a value that is
outside the range of the data type.

¢ IOException, is thrown when there is an error in an IO operation.

¢ DirectoryNotFoundException, is thrown when there is an attempt to access a
directory that is not found in the system.

¢ FileNotFoundException, is thrown when there is an attempt to access a file that is
not found in the system.

e SqlException, is thrown when an sql server returns a warning or error.

Handling Exception

An exception can be handled by writing a code (that might throw an error at runtime) inside a try-catch or a
try-catch-finally block.

try-catch

try-catch are two separate blocks that come together to handle an exception. In #ry block, we write the
suspicious code that may throw an exception at runtime; use catch block to handle an exception thrown by
the code written in try block as shown in the following Listing 9-1

Syntax
try
{

}

catch

{

//Write Suspicious Code

//Do something when exception occurs

}

Code Snippet

Listing 9-1. Use try-catch to handle an exception

using System;

namespace DemoProject

{

272

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

class Program

{
static void Main(string[] args)
{
int[] numbers = new int[2];
try
{
numbers[0] = 0;
numbers[1] = 1;
numbers[2] = 2;
foreach (int i in numbers)
{
Console.Writeline(i);
}
}
catch
{
Console.WriteLine("An exception is thrown");
}
}
}
}
//0utput

An exception is thrown

Explanation

The above code (Listing 9-1) handles the exception and didn’t break the execution of the running program.

try-catch (ExceptionType ex)

try-catch are two separate blocks that come together to handle an exception. In ¢ry block, we write the
suspicious code that may throw an exception at runtime; use catch (ExceptionType ex) block to handle the
object of a specific type of exception.

Syntax
try
{
//Write Suspicious Code
}
Catch (ExceptionType ex)
{
//Do something when specified type of exception occurs
}

273

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Code Snippet

Listing 9-2. Use try-catch (ExceptionType ex) to handle a specific exception instance

using System;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
int[] numbers = new int[2];
try
{
numbers[0] = 0;
numbers[1] = 1;
numbers[2] = 2;
foreach (int i in numbers)
{
Console.Writeline(i);
}
}
catch (IndexOutOfRangeException ex)
{
Console.WritelLine("Error Message: {0}", ex.Message);
}
}
}
}
//0utput

Error Message: Index was outside the bound of the array.

Explanation

The catch block handled the object of IndexOutOfRangeException that was thrown by try block. ex.Message

property is used to display the error message of the exception.

Code Snippet

Listing 9-3. Use try-catch (Exception ex) to handle an all exception instance

using System;

namespace DemoProject

{

class Program

{

static void Main(string[] args)

{

int[] numbers = new int[2];

274

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

try

numbers[o0]
numbers[1]
numbers[2] = 2;

n o n
= O
e W

foreach (int i in numbers)

{
Console.WritelLine(i);
}
}
catch (Exception ex)
{
Console.WriteLine("Error Message: {0}", ex.Message);
Console.WriteLine("ExceptionType: {0}", ex.GetType());
}
}
}
}
//0utput

Error Message: Index was outside the bound of the array.
ExceptionType: System.IndexOutOfRangeException

Explanation

System.Exception is a base class of an all exception type, so we can use catch (Exception ex) to handle

those exceptions whose types are unknown to us. When the exception is handled in catch {}, we can use ex.
GetType() method to get the type of exception. Also, it is the best practice is to write Exception class (in catch
block) because Exception is something that can occur for many reasons.

try-catch (ExceptionType)

try-catch are two separate blocks that come together to handle an exception. In #ry block, we write the
suspicious code that may throw an exception at runtime; in catch (ExceptionType) block we handle the specific
type of exception. However, in catch (ExceptionType) we can’t hold the reference of an exception object.

Syntax
try
{
//Write Suspicious Code
}
Catch (ExceptionType)
{
//Do something when specific type of exception occurs
}

275

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Code Snippet

Listing 9-4. Use try-catch (ExceptionType) to handle a specific exception

using System;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
int[] numbers = new int[2];
try
{
numbers[0] = 0;
numbers[1] = 1;
numbers[2] = 2;
foreach (int i in numbers)
{
Console.WritelLine(i);
}
}
catch (IndexOutOfRangeException)
{
Console.WritelLine("Index out of bound exception is thrown");
}
}
}
}
//0utput

Index out of bound exception is thrown

Explanation

Catch block handles the exception of type IndexOutOfRangeException. The catch block cannot hold the
reference of an IndexOutOfRangeException object. Under catch block we write the code to execute when a
specific type of exception is raised.

try-catch-finally
try-catch-finally is a full version of handling exception in a better way. It comprises of three blocks:
e tryf}, is used to write a block of code that may throw an exception.
e catchf}, is used to handle a specific type of exception.
e finally {}, is used to to clean up actions that are performed in a try block.
finally block is always run at the end, regardless of whether an exception is thrown or a catch block

matching the exception type is found.

276

CHAPTER 9

Syntax
try
{

}
catch (ExceptionType ex)

// Code to try goes here.

// Code to handle the exception goes here.

}
finally

{
// Code to execute after the try-catch blocks

// goes here.

}

Code Snippet

EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Listing 9-5. Use try-catch-finally to handle an exception gracefully

using System;

namespace DemoProject

Console.WriteLine("Index out of bound exception is thrown");

{
class Program
{
static void Main(string[] args)
{
int[] numbers = new int[2];
try
{
numbers[0] = 0;
numbers[1] = 1;
numbers[2] = 2;
foreach (int i in numbers)
{
Console.WritelLine(i);
}
catch (IndexOutOfRangeException)
{
}
finally
{
numbers = null;
Console.WriteLine("Program Ends");
}
}

277

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

}
}
//0utput

Index out of bound exception is thrown
Program Ends

Explanation

(In Listing 9-5) Finally block is executed right after the catch block finishes its execution. Usually finally block
is used to free the resources.

try-finally
finally block can be used after try block to release the resources used by code written in try block.
Syntax

try
{

}

finally
{

// Code to try goes here.

// Code to execute after the try blocks
// goes here.

}

Code Snippet

Listing 9-6. Use try-finally

using System;

namespace DemoProject

{ class Program
{ static void Main(string[] args)
{ int[] numbers = new int[2];
try
{

numbers[0] = 0;
numbers[1] = 1;

foreach (int i in numbers)

{
}

Console.Writeline(i);

278

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

finally
{

numbers = null;
Console.WritelLine("Program Ends");

}
}
}
}
//0utput
0
1

Program Ends

Use Multiple Catch Blocks to Handle Multiple Exceptions

After first try{} block, more than one catch block can be used to handle multiple types of exceptions that can

be thrown by try block.

When stacking multiple catch blocks, we use the most specific exception type on the first catch block

and use the least specific exception type at the last catch block.

Syntax
try
{
// Code to try goes here.
}
catch (ExceptionType ex)
{
// Code to handle the exception goes here.
}

catch (ExceptionType ex)

// Code to handle the exception goes here.

}

finally
{

// Code to execute after the try-catch blocks
// goes here.

}

Code Snippet
Listing 9-7. Use multiple catch blocks to handle multiple exception types
using System;

namespace DemoProject

{

class Program

279

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

{
static void Main(string[] args)
{
try
{
Divide(1, 0, "Result = ");
}
catch (DivideByZeroException)
{
Console.Writeline("Divide by zero exception");
}
catch (NullReferenceException)
{
Console.WriteLine("Null reference exception");
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
}
finally
{
Console.WritelLine("Program Ends");
}
}
private static void Divide(int a, int b, string s)
{
int result = a / b;
Console.Writeline(s.ToUpper() + result);
}
}
}
//0utput

Divide by zero exception
Program Ends
Explanation

Multiple catch blocks are used to catch multiple exception types. When a specified exception type matches
with catch (exceptiontype) it will execute the block and then jump to the finally block if it exists.

Throwing Exceptions

In C#, an object of exception can be explictly thrown from code by using the throw keyword. A programmer
should throw an exception from code if one or more of the following conditions are true:

1. When method doesn’t complete its defined functionality, for example,
Parameters has null values, etc.

2. When an invalid operation is running, for example, trying to write to a read-only
file, etc.

280

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Syntax
throw exception;
Code Snippet

Listing 9-8. Throw a new exception instance

using System;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
try
{
Show(null, 10);
}
catch (ArgumentException ex)
Console.WritelLine(ex.Message);
}
}
private static void Show(string fname, int age)
{
if (fname == null)
{
throw new ArgumentException("Parameter cannot be null", "fname");
}
Console.WriteLine(fname + " " + age);
}
}
}
//0utput

Parameter cannot be null
Parameter name: fname

Explanation

Show method has a check statement; if parameter “fname” is null then it throws a new instance
of ArgumentException with a custom message passed to its constructor. The second parameter of
argumentexception shows the name of the parameter which causes the error, i.e., “fname’”.

When the exception caught is a catch block, it shows the message along with the name of the parameter
that causes the exception, i.e., “fname”.

281

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Re-throwing an Exception

If an exception is caught but still wants to throw to be caught again by the calling method, then use simple throw;
for example, you may catch and log an exception and then re-throw it to be handled by the calling method.

By re-throwing an exception you can preserve the stack trace, which tells where the exception arised in
the first place and where it was re-thrown.

Syntax
throw;
Code Snippet

Listing 9-9. Re-Throw an exception and preserve stack-trace

using System;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
try
{
Show(null, 10);
catch (NullReferenceException ex)
{
Console.WritelLine(ex.StackTrace);
}
}
private static void Show(string fname, int age)
{
try
{
Console.WriteLine(fname.ToUpper() + " " + age);
}
catch (NullReferenceException)
{
//Log the exception message here!
throw;
}
}
}
}
//0utput

at DemoProject.Program.Show(String fname, Int32 age) in C:\Users\aliso\Source\Repos\demo\
DemoProject\DemoProject\Program.cs:line 29

282

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

at DemoProject.Program.Main(String[] args) in C:\Users\aliso\Source\Repos\demo\
DemoProject\DemoProject\Program.cs:line 12\Call stack

Explanation

ex.StackTrace shows the exception first arised at Show method in Line 29 and then it was passed to the
Main Method, where it was handled again in line 12. Therefore, by using the throw keyword we can pass the
exception to the calling method to handle the exception.

Throwing an Exception with an Inner Exception

An exception can be thrown along with an inner exception by passing the inner exception in the second
parameter of the newly arised exception. Also, if you throw a new exception with the initial exception you
will preserve the initial stack trace too.

Code Snippet

Listing 9-10. Throw a new exception with an inner exception and preserve the stack-trace

using System;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
try
{
Show(null, 10);
}
catch (Exception ex)
Console.WritelLine(ex.Message);
Console.WritelLine(ex.StackTrace);
Console.WriteLine(ex.InnerException.Message);
}
}
private static void Show(string fname, int age)
{
try
{
Console.WriteLine(fname.ToUpper() + " " + age);
}
catch (NullReferenceException ex)
{

//Null Reference passed in second parameter of new exception
//s0, null reference becomes the inner exception.
throw new Exception("A new exception is arised",ex);

283

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

}
}
//0utput
A new exception is arised
at DemoProject.Program.Show(String fname, Int32 age) in C:\Users\aliso\Source\Repos\demo\
DemoProject\DemoProject\Program.cs:1line 34

at DemoProject.Program.Main(String[] args) in C:\Users\aliso\Source\Repos\demo\
DemoProject\DemoProject\Program.cs:line 12
Object reference not set to an instance of an object.

Creating Custom Exceptions

In C#, a custom exception can be created by inheriting the System.Exception class. Generally, custom
exceptions are useful in large-scale projects where multiple modules are talking to each other.

Syntax

class <ClassName> : System.Exception

{
}

Code Snippet

Listing 9-11. Create a custom exception

using System;

namespace DemoProject

{
class MyCustomException : System.Exception
{
//0verload constructor if you want
public MyCustomException(string message) : base(message)
{
//T0D0: Provide definition if you want
}
}
class Program
{
static void Main(string[] args)
{
try
Show();
}

284

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

catch (MyCustomException ex)

{
Console.WritelLine(ex.Message);
}
}
private static void Show()
{
throw new MyCustomException("It's a custom exception!");
}
}
}
//0utput

It's a custom exception!

Explanation

Show method throws a custom exception with a custom message. Main method handled the custom
exception and showed the custom message.

Validating Application Input

The output and result of an application or operation depends upon its input. The input data must be
validated so the application can produce the right results. Most of the time, data can be validated through a
simple if-else statement, but using if-else on each data wouldn’t be easy to manage. For example, what if the
huge list of email ids has to be validated? In that case .NET provides Regular Expressions to validate string
values quickly.

Regular Expressions

.NET Framework provides a regular expression engine to validate a large amount of text by quickly parsing
the text to find a specific character pattern. For example, a regular expression can be used to validate the
pattern for email id, etc.

Character Pattern Cheatsheet

Character pattern defines how a string must be represented; patterns help to validate a string. The following
are some commonly used characters for pattern matching a text in regular expression.

e * matches the previous character for zero or more times. E.g.,“bo*” matches either
Mb" u ”
or “boo’”.

e+, matches the previous character for one or more times. E.g., “bo+” matches either
“bo” or “boo”.

e 2 matches the previous element zero or one time. E.g., “Al?i” matches either “Ai” or
[o
‘Ali

e A matches the character at the beginning of a string. E.g., “*\d{3}"” matches “123-ali”

285

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

e $ matches the character at the end of a string. E.g., “\d{3}$” matches “ali-123”
¢ {n}, matches the previous element for “n” times. E.g., “\d{3}” matches “125”
e x|y, matches eitherx ory. E.g., “a]bc” matches “a” or “bc”

¢ [xyz], matches any one of the enclosed characters. E.g., “[ali]” matches “a” in “Fart”

e [Axyz], it’s the negation of all enclosed characters. The matches string must not have
those character sets. E.g., “[*ab]” matches “film”

e \d, matches a digit. Equivalent to [0-9]

¢ \D, matches a non-digit. Equivalent to [20-9]

e \s, matches a whitespace, tab, form-feed, etc. Equivalent to [\f\n\r\t\v]
e \S, matches a non-white space. Equivalent to [A\f\n\r\t\v]

e \w, matches a word including an underscore. Equivalent to [A-Za-z0-9]

e \W, matches a non-word character. Equivalent to [*A-Za-z0-9]

Regex

In C#, we use the Regex class of System.Text. RegularExpressions namespace; it represents the .NET
Framework’s regular expression engine. The Regex class contains methods and properties to validate a text
with a specific character pattern; some of them are listed below.

e IsMatch(string input), returns true if the regular expression specified in the Regex
constructor matches with the specified input string.

e IsMatch(string input, int startat), returns true if the regular expression specified
in the Regex constructor matches with the specified input string and begins at the
specified starting position of the string.

e IsMatch(string input, string pattern), returns true if the specified regular
expression matches with the specified input string.

e Matches(string input), searches the specified input string for all occurrences of a
regular expression.

e Match(string InputStr, string Pattern), matches the input string with a string
pattern.

¢ Replace(string input, string replacement), in a specified input string, replaces all
strings that match a regular expression pattern with a specified replacement string.

Code Snippet

Listing 9-12. Validate phone number with Regular Expression
using System;

using System.Text.RegularExpressions;

namespace DemoProject

{

class Program

286

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

{
static void Main(string[] args)
{
//Pattern for Matching Pakistan's Phone Number
string pattern = @"\(\+92\)\s\d{3}-\d{3}-\d{4}";
//Ali's Phone Number
string inputStr = "(+92) 336-071-7272";
bool isMatched = Regex.IsMatch(inputStr, pattern);
if(isMatched == true)
{
Console.WritelLine("Pattern for phone number is matched with inputStr");
}
else
{
Console.WriteLine("Pattern for phone number is not matched with inputStr");
}
}
}
}
//0utput

Pattern for phone number is matched with inputStr.

Explanation

Pattern string contains character set, which makes sure if the input string is according to Pakistan’s phone
number’s pattern. Here is how it works:

@“\(\+92\)\s\d{3}-\d{3}-\d{4}";

Table 9-1. Explain Phone number Pattern

Pattern Meaning

\ (" \ (" matches '('

\+' \+' matches '+

92' 92" matches '92'

\)' \)' matches ')’

\s' \s' matches a space '’

\d{3}' \d{3}' matches numeric digits for 3 times, its equivalent to '456'
- -'matches '-'

\d{3}' \d{3}' matches numeric digits for 3 times, its equivalent to '456'
- -'"matches '-'

\d{4} \d{4}' matches numeric digits for 4 times, its equivalent to '4561'

287

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Code Snippet

Listing 9-13. Validate an Email ID with Regular Expression

using System;
using System.Text.RegularExpressions;

namespace DemoProject

{
class Program
{
static void Main(string[] args)
{
//Pattern for Matching an email id
string pattern =
@""\w+[a-zA-20-9]+([-._][a-20-9]+)*@([a-z0-9]+)\.\u{2,4}";
//Ali's email id
string inputStr = "imaliasad@outlook.com";
bool isMatched = Regex.IsMatch(inputStr, pattern);
if(isMatched == true)
{
Console.WritelLine("Pattern for email id is matched with inputStr");
}
else
{
Console.Writeline("Pattern for email isn't matched with inputStr");
}
}
}
}
//0utput

Pattern for email id is matched with inputStr.

Explanation

Pattern string contains chararacter set, which makes sure if the input string is according to the email ID
pattern. Here is how it works:

@“Mw+[a-zA-Z0-9]+([-._][a-z0-9]+)*@([a-z0-9]+)\.\w{2,4}"

288

CHAPTER 9 © EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Table 9-2. Explain Email ID Pattern

Pattern Meaning

AT

~' matches everything from start

\w+ \w+' tells there must be at least one or more alphabets
[a-zA-Z0-9]+ [a-zA-Z0-9]+' tells there must be one or more alphanumeric
[-.] tells there can be any included special characteri.e'-. '
([-._1[a-z0-9]+)* tells there can be a special character and alphanumeric values
@ @' matches '@’

\. \.'matchesadot'.’

\w{2,4} \w{2,4} tells there must be minimum 2 or maximum 4 words

Summary

e Exception is an error that occurs at runtime and may break the execution of an
application.

e try-catch-finally blocks are useful to handle exception gracefully.
e Programatically, an exception can be thrown by using a throw keyword.
e A custom can be created by inheriting the Exception class.

e Regular Expression is useful to validate the large string values with certain patterns.

Code Challenges
Challenge 1: Validate Email, Phone Number, and Website

You're developing an application that asks the user to enter their

1. Email ID

2. Phone Number
3. Date of Birth

4. Zip Code

5. Website

Your application must validate their information by using regular expression and must handle
exception in case the user enters invalid values.

289

CHAPTER 9 * EXCEPTION HANDLING AND VALIDATING APPLICATION INPUT

Practice Exam Questions

Question 1

How do you throw an exception to preserve stack-trace information?
A) throw;
B) throw new Exception();
C) throwe;

D) return new Exception();

Question 2
You need to validate a string which has numbers in 333-456 format. Which pattern would you choose?
A @“\d\d-\d\d”
B) @“\n{3}-\n{3}"
C) @“[0-9]+-[0-9]"
D) @"\d{3}-\d{3}"

Question 3

Suppose you're developing an application that require that need to define its own custom exceptions. Which
of the following class you'd inherit to create a custom exception?

A) Attribute
B) Exception
C) IEnumerable

D) IEnumerator

Answers
1. A
2. D
3. B

290

CHAPTER 10

File /0 Operations

Interacting with files is a common task when developing an application. Sometimes you need to store some
kind of information into files and store that information in a different format (i.e., binary or text), or you need
to send or access some kind of data over the network. In these scenarios, a .NET framework provides classes
to deal with them.

This chapter will cover the main concepts used to interact with File System and give an understanding
of the working of the following things:

1. Drives and Directories
Files and Streams

Interaction with Remote Files

El A

Asynchronous File I/O

The .NET Framework gives the classes to interact with a File I/O that can be found in the System.IO
namespace. This namespace is the collection of the base classes devoted to file-based and memory-based
input and output services.

Working with Drive

Drive or Storage is important to know about when dealing with file system. The .NET framework provides
a class (Drivelnfo) to interact with a storage medium, which may be a hard drive or any other storage (i.e.,
removable disk). This class gives you information about the drives, such as the name, size, and free space of
the drive. You can also get to know which drives are available and what kind they are.

Listing 10-1 shows how you can interact with Drives and get to know about them.

Code Snippet

Listing 10-1. Single Drive info

//Get the Drive

DriveInfo info = new DriveInfo(@"C:\");
Console.WritelLine("Name is: "+info.Name);
Console.Writeline("Drive Type is: "+info.DriveType);

Explanation

Drivelnfo is a class provided by .NET in System.IO, used to interact with Drives. In Drivelnfo’s constructor,
the Drive name is passed and you can access its information as shown in Listing 10-1.

© Ali Asad and Hamza Ali 2017 291
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_10

CHAPTER 10 * FILE I/0 OPERATIONS

You can also get all the drives and fetch their details using the GetDrives() method (static method of
Drivelnfo class). Listing 10-2 shows the use of the GetDrives() method.

Code Snippet

Listing 10-2. All Drive info

//Get the all the drive
DriveInfo[] driveInfo = DriveInfo.GetDrives();
foreach (var info in drivelInfo)

{
Console.WriteLine("Name is: " + info.Name);
Console.WritelLine("Drive Type is: " + info.DriveType);
Console.Wri‘teLine("********************");

}

Working with Directories

Drive contains directories and files. To work with them, DirectoryInfo or Directory (Static Class) is used. Both
the classes can be used to access directory structure. You can access all the folders’ files (or the subfolder), as
well as the specific file in the folder or sub-folder using these classes. You can also create and perform other
folder-related operations on a new folder or directory using these classes.

Directory and DirectoryInfo

Directory Class is a static class performing a single operation. It's usually used when performing single task,
like just creating a folder. It is preferable to use in such cases.

Directorylnfo is a non-static class performing multiple operations. It’s usually used when performing
multiple operations/tasks, like creating a folder, then creating sub-folders or moving them or getting files
from that folder. It is preferable to use in such cases.

Listing 10-3 shows how you can create a new folder using these both classes.

Code Snippet

Listing 10-3. Create Directory

//Create new directory/folder using Directory Class
DirectoryInfo directory = Directory.CreateDirectory("Directory Folder");

//Create new directory/folder using DirectoryInfo Class
DirectoryInfo directoryInfo = new DirectoryInfo("DirectoryInfo Folder");
directoryInfo.Create();

Explanation

As shown from the code, you just need to give a full path along with a folder name where you want to create
the folder as a parameter in the CreateDirectory() method of Directory Class. A new directory or folder with the
name “Directory Folder” will be created. (As you can see, there is just the name of a folder, i.e., when the path
is not given, then by default the folder will be created in the current directory where you are working). And a
newly created directory returns Directorylnfo’s object on which you can perform further operations given by

a DirectoryInfo class on a newly created folder like the Exist() method (to check the existence of a folder), the
Delete() method (to delete the folder), or the CreateSubdirectory() method (to create a subdirectory).

292

CHAPTER 10 * FILE I/0 OPERATIONS

The code also shows the creation of a folder by DirectoryInfo Class. Give the name of a folder or path
along with the folder name in DirectoryInfo’s constructor and it will catch the path where to create the folder
and, later, its object’s method: enter Create(), and a new folder named “DirectorylInfo folder” will be created.
After creation, you can perform an operation on the newly created folder.

Listing 10-4 shows how you can check the existence of a created folder.

Code Snippet

Listing 10-4. checking the existence of specific directory

//Check Existence of created directory/folder using Directory Class
if(Directory.Exists("Directory Folder"))

{
}

//Check Existence of created directory/folder using DirectoryInfo Class
if (directoryInfo.Exists)

Console.WriteLine("Directory Folder Exists");

{

Console.WriteLine("DirectoryInfo Folder is Exists");
}
Explanation

As shown from code, if Directory Class is used, you have to give explicitly the path of the folder to perform
any of the operations, but when DirectoryInfo Class is used, you just need to call its properties or functions as
DirecotoryInfo’s object already knows where or what the folder is.

You can also delete the folder by using the Delefe() method but if the directory is not found, you will
encounter the following exception: DirectoryNotFoundException.

To move the directory from one location to another location is also a common task to use. Listing 10-5
shows how to move a folder using Directory and Directorylnfo class.

Code Snippet

Listing 10-5. Move directory from one location to another

//Using Directory Class
Directory.Move("Directory Folder", "../Moved Directory Folder");

//Using DirectoryInfo Class
directoryInfo.MoveTo("../Moved DirectoryInfo Folder");

Explanation

Move() method is used with Directory Class (Static class), whereas MoveTo() method is used with
Directorylnfo Class. Move() method requires you to know the source directory path and the destination
directory path, whereas the MoveTo() method just requires the destination directory path because the
DirectoryInfo's object already constrains the reference of the source directory path.

Note When working with the huge directory structure, use the EnumerateDirectories() method instead of the
GetDirectories() method to fetch the directories, as EnumerateDirectories() start enumerating directories before
they have been completely retrieved (Lazy Loading or Deferred Execution); whereas in the GetDirectories() case,
code would not move forward until all the list of directories have been retrieved (Immediate Execution).

293

CHAPTER 10 * FILE I/0 OPERATIONS

Working with Files

As Directory and Directorylnfo class allow you to interact with folder structure, File and Filelnfo allow you
to interact with files, for example, to create file or to delete a file or check its existence or the operations or
properties provided by File or Filelnfo Class.

Directory or Directorylnfo class is also used to fetch all the files in a specific folder or its sub-folder or
files with specific types (such as images), and File or FileInfo class is used to access the information of those
files or to perform operations on those files.

Listing 10-6 shows how to fetch all the files from a folder/directory using these classes:

Code Snippet

Listing 10-6. get all files from a specific folder

//Get file from specific directory using Directory Class
string[] fileNames= Directory.GetFiles("Directory Folder");
foreach (var name in fileNames)

{
}

//Get Files from specific directory using DirectoryInfo Class
DirectoryInfo directoryInfo = new DirectoryInfo("DirectoryInfo Folder");
FileInfo[] files= directoryInfo.GetFiles();

foreach (var file in files)

{

Console.WriteLine("Name is:{0}",name);

Console.WriteLine("Name is:{0}",file.Name);
Console.WriteLine("Directory Name:{1}",file.DirectoryName);

GetFiles() method is an overloaded method and you can use this accordingly.

Note Directory Class will just give you names of files in the provided directory, whereas Directoryinfo will
return a Filelnfo(Class) object on which you can perform file-related operations.

File and Filelnfo

Like Directory and DirectoryInfo class, .NET also provided File and Filelnfo class to have the same working
context but be used to interact with files.
Listing 10-7 shows some of the operations performed on a specific file.

Code Snippet

Listing 10-7. Some tasks performed on a specific file

//To Create a file in current location named "File" using File(Static Class)
File.Create("File.txt").Close();

//To Write content in a file named "File"
File.WriteAllText("File.txt", "This is file created by File Class");

294

CHAPTER 10 * FILE I/0 OPERATIONS

//To Read the file named "File"
string fileContent= File.ReadAllText("File.txt");
Console.Writeline(fileContent);

//To Copy "File" from current location to a new one (Previous folder)
File.Copy("File.txt", "../Copied File.txt");

//To Create file in current location named "FileInfo" using FileInfo Class
FileInfo info = new FileInfo("FileInfo.txt");
info.Create();

//To Move "FileInfo" from current location to a new one (Previous Folder)
info.MoveTo("../Moved FileInfo.txt");

As you noticed in the first line of code, Create() method is preceded by the Close() method. This is due
to File (Static Class) performing a single operation which is, in this case, creation of a file and, after creation
of a file, you must close the file before performing another operation on it. That’s why Close() is called after
creation: so that the file could be written.

These operations performed on a file are much like those performed on Directory. Copy/CopyTo (methods
of File/ FileInfo) should be used where you want to leave one copy at a previous location and another/others at a
new location; whereas Move/ MoveTo (methods of File/ FileInfo) should be used where you do not want to leave a
copy at a previous location but just copy it to a new location. It is just like cut and paste behavior.

When you need to update the content of a file or need to change the content of an already created file,
then you can use the AppendText() method provided by both File and FileInfo Classes.

Basically, there are two different methods to create a file. These are given below with details:

1. Create(): Create or override a file specified in a parameter as a Path and return
FileStream’s object.

2. CreateText(): Create or open a file for writing and return StreamWriter’s object.

Working with Stream

Stream is an abstract class used for writing and reading bytes. It is for File I/O operations. When working
with files, it's important to know about Stream because a file is stored on your computer hard drive or DVD
in a sequence of bytes. When communicating over the network, a file is transferred in the form of a sequence
of bytes. Also, it is stored in memory in the form of a sequence of bytes.

Stream has three main tasks:

1. Writing: Writing means to convert the object or data into bytes and then store it
in memory or a file, or it can be sent across the network.

2. Reading: Reading means to read the bytes and convert them into something
meaningful, such as Text, or to deserialize them into an object.

3. Seeking: It is the concept of query for the current position of a cursor and
moving it around. Seeking is not supported by all the streams, i.e., you cannot
move forward or backward in a stream of bytes that is being sent over a network.

Stream has the following types:
1. FileStream

2. MemoryStream

295

CHAPTER 10 * FILE I/0 OPERATIONS

3. BufferedStream
4. NetwrokStream
5. CryptoStream

The Stream offers you different kinds of operations, such as Create, Read, and Seek, etc.

FileStream

FileStream drives from the abstract class Stream, mainly used to write and read bytes in the file.

Using FileStream with File/FileInfo Class

Listing 10-8 shows how you can use FileStream when you can write content in a file when you interact with
File Class.

Code Snippet

Listing 10-8. Use of FileStream with File to write content in a file

FileStream fileStream = File.Create("File.txt");

string content = "This is file content”;

byte[] contentInBytes = Encoding.UTF8.GetBytes(content);
fileStream.Write(contentInBytes,0,contentInBytes.Length);
fileStream.Close();

Explanation

Basically, when you create the file using File or FileInfo Class, it returns an object of type FileStream or
StreamWriter or another Stream (sequence of bytes), as the file is stored or transferred in the form of bytes.
After getting the stream of a file, you can perform respective operations on a file depending on the type of
Stream. As in this case, File.Create() returns a FileStream object so you can further perform FileStream’s
operations on the created file.

As mentioned, Stream works on bytes; therefore, to write something in the file, you need to convert the
content in the form of bytes and then you can write into the file using FileStream’s Write() method.

The Write() method takes three parameters containing the bytes of contents to write, the starting, and
the ending position of bytes to write.

When you are dealing with Files, it is important to release the resource as shown in the code for File;
Close() method must be called to release the file resources so that it can be used for later operations to be
performed in Files. If you don’t release the resource, you will get the exception “A file is open/being used in
another process” or something like this. You can also use block to release the resource.

Note The process of converting characters into bytes and vice versa is called Encoding and Decoding.

Using FileStream Class

FileStream Class is used for the creation and writing of content in a file.

296

CHAPTER 10 FILE I/0 OPERATIONS
Syntax
FileStream <object name> =new FileStream(<File Name>,<FileMode>,<FileAccess>,<FileShare>)

Explanation

FileStream has some parameters to explain. The following details illustrate parameters that FileStream
accepts:

Table 10-1. FileStream Parameters

Parameter Description
File_Name File_Name is the name of a file on which an operation will perform.
FileMode FileMode is an enumeration that gives a different method to open the file:

1. Append: It Creates the file if the file does not exist and, if it exists, it puts the
cursor at the end of the file.

2. Create: Creates a new file and, if the file already exists, it will override it.

3. CreateNew: Creates a new file and, if the file already exists, it will throw an
exception.

4. Open: Opens the file.

5. OpenOrCreate: Opens the existing file; if it’s not found, then it creates a new one.

6. Truncate: opens the existing file and truncates its size to zero bytes.

FileAccess FileAccess is an enumeration that gives a different method to access a file:
1. Read: tells the file has just read access.
2. ReadWrite: tells the file has read and write access.
3. Write: tells the file has just write access.

FileShare FileShare is an enumetation that gives different methods:
1. Delete: Allows subsequent deleting of a file.
2. Inheritable: Allows the file to handle child process inheritance.
3. None: Stops to share the file. File must be closed before access by another
process.
4. Read: Allows file for reading.
5. ReadWrite: Allows file for reading and writing.
6. Write: Allows file to write.

Listing 10-9 shows how to write data in a file using FileStream Class.

Code Snippet

Listing 10-9. FileStream to write in the file

FileStream fileStream = new FileStream("File.txt",FileMode.Create,FileAccess.Write
,FileShare.Write);

string content = "This is file content”;

byte[] contentInBytes = Encoding.UTF8.CGetBytes(content);
fileStream.Write(contentInBytes, 0, contentInBytes.Length);

fileStream.Close();

297

CHAPTER 10 * FILE I/0 OPERATIONS

MemoryStream

MemoryStream drives from the abstract class Stream; it’s mainly used to write and read bytes from memory.
Listing 10-10 shows how to write and read from MemoryStream.

Code Snippet

Listing 10-10. Use of MemoryStream

MemoryStream memoryStream = new MemoryStream();
string content = "This is file content";
byte[] contentInBytes = Encoding.UTF8.CGetBytes(content);

//Write into file
memoryStream.Write(contentInBytes, 0, contentInBytes.Length);

//Set the position to the begninig of stream
memoryStream.Seek(0, SeekOrigin.Begin);

//Read from file
byte[] readContent = new byte[memoryStream.Length];

int count= memoryStream.Read(readContent, 0, readContent.Length);
for (int i =count; i < memoryStream.lLength; i++)

{

}
string result= Encoding.UTF8.GetString(readContent);

Console.Writeline(result);

readContent[i] = Convert.ToByte(memoryStream.ReadByte());

BufferedStream

Buffer is a block of bytes in memory used to cache the data. BufferedStream needs stream to be buffered.
Listing 10-11 shows how you can write and read from Buffer using BufferStream.

Code Snippet

Listing 10-11. Use of Buffer Stream

FileStream fileStream = File.Create("Sample.txt");
BufferedStream memoryStream = new BufferedStream(fileStream);
string content = "This is file content”;

byte[] contentInBytes = Encoding.UTF8.GetBytes(content);

//Write into file
memoryStream.Write(contentInBytes, 0, contentInBytes.Length);

//Set the position to the begninig of stream
memoryStream.Seek(0, SeekOrigin.Begin);

//Read from file
byte[] readContent = new byte[memoryStream.Length];

298

CHAPTER 10 * FILE I/0 OPERATIONS

int count= memoryStream.Read(readContent, 0, readContent.Length);
for (int i =count; i < memoryStream.Length; i++)

{
}

string result= Encoding.UTF8.GetString(readContent);
Console.WritelLine(result);

readContent[i] = Convert.ToByte(memoryStream.ReadByte());

Note NetfworkStream and CryptoStream are also common. It is recommended to explore them too, but
these are not in exam 70-483.

Working with File Reader and Writer

To convert bytes into readable form or to write or read values as bytes or as string, .NET offers the following
classes in such a case. For those purposes, we have:

1. StringRead and StringWriter
2. BinaryReader and BinaryWriter

3. StreamReader and StreamWriter

StringReader and StringWriter

These classes are used to read and write characters to and from the string. Listing 10-12 shows the use of
StringReader and StringWriter.

Code Snippet

Listing 10-12. StringReader and StringWriter

//Write string or characters

StringWriter stringWriter = new StringWriter();
stringWriter.Write("String Writer example");

stringWriter.Write(" Append Text");
Console.WriteLine(stringhiriter.ToString());

//Read string

StringReader stringReader = new StringReader("String Reader Example");
Console.WriteLine(stringReader.ReadlLine());

BinaryReader and BinaryWriter

These classes are used to read and write values as Binary Values. Listing 10-13 shows the example of
BinaryReader and BinaryWriter.

Code Snippet

Listing 10-13. BinaryReader and BinaryWriter

//Write Data Types values as Binary Values in Sample.dat file
FileStream file = File.Create("Sample.dat");

299

CHAPTER 10 * FILE I/0 OPERATIONS

BinaryWriter binaryWriter = new BinaryWriter(file);
binaryWriter.Write("String Value");
binaryWriter.Write('A");

binaryWriter.Write(true);

binaryWriter.Close();

//Read Binary values as respective data type's values from Sample.dat
FileStream fileToOpen = File.Open("Sample.dat", FileMode.Open);
BinaryReader binaryReader = new BinaryReader(fileToOpen);
Console.WritelLine(binaryReader.ReadString());
Console.WritelLine(binaryReader.ReadChar());
Console.Writeline(binaryReader.ReadBoolean());

Explanation

BinaryReader has methods to read a specific data type’s value. For example, if there is a string value in binary
form then you use the ReadString() method and so on, but if there is no written value as binary and you want
to read it then exception will be thrown. Also, it is important to read ordinally as values are written.

StreamReader and StreamWriter

StreamWriter drives from TextWriter class; it’s used to write character/characters to the stream.
StreamReader drives from TextReader class; it’s used to read bytes or string. Listing 10-14 shows the example
of StreamReader and StreamWriter.

Code Snippet

Listing 10-14. StreamReader and StreamWriter

StreamWriter streamWriter = new StreamWriter("Sample.txt");
streamWriter.Write('A");

StreamReader streamReader = new StreamReader("Sample.txt");
Console.Writeline(streamReader.ReadlLine());

Communication over the Network

System.Net namespace provides support for your applications to communicate across a network. Most
commonly, the members of this namespace you use are WebRequest and WebResponse classes. Both of
these classes are abstract and used to communicate over the network. System.Net namespace also provides
specific implemented classes that depend on what the protocol is going to use for communication. For
example, HttpWebRequest class and HttpWebResponse class are used when you are using Http Protocol.

In General, we use WebRequest class to send the request for information and WebResponse class to
receive the response of the requested information.

Listing 10-15 shows how to use these classes when communicating over the network.

Code Snippet

Listing 10-15. WebRequest and WebResponse

WebRequest request = WebRequest.Create("http://www.apress.com");
WebResponse response = request.GetResponse();

300

CHAPTER 10 * FILE I/0 OPERATIONS

StreamReader reader = new StreamReader(response.GetResponseStream());
string result = reader.ReadToEnd();

Console.Writeline(result);
response.Close();

Explanation

WebRequest is created using the Create() method (static method of WebRequest class), which takes the
address of the request in a string or Uri format. WebResponse is linked to WebRequest, so it gets the
response of the requested information or data using its GetResponse() method.

The Create() method of WebRequest inspects the address and chooses the correct protocol
implementation. In code, we passed http://www.apress.com, so it would choose Http protocol and return
the HttpWebRequest. You can also use WebRequest’s method or properties to perform further operations on it.

After getting the response, StreamReader is used to get the response in stream so that it can be read.

Working with asynchronous File 1/0

Reading and writing of the file might be a time-consuming task and you have to wait a long time to finish the
operation. The code in this chapter is called synchronous code. The code is executed line by line and often
waits till the task ends. This wait can be long enough to annoy the user and put a severe impact on the user
experience.

For example, in desktop applications, you have one thread that is the main thread and which is
responsible for all the tasks, i.e., updating the UI and processing other tasks as well. If you have a long
task to process (i.e., waiting for the network stream to respond or reading a file from Internet), then the
main thread will be busy in processing that task and, meanwhile, the UI of the application will be stuck
and be unresponsive, which will be a bad experience for the user. In such scenarios, such a long-running
task should be processed in another thread so that the main thread is not busy and the application stays
responsive. In this way, your code will execute in an asynchronous manner.

Note Details of Synchronous and Asynchronous code are discussed in Chapter 8.

Async and Await in File I/O

Async (async) and Await (await) are the keywords provided by .NET Framework in C# 5.0. They tell the
compiler to execute code in an asynchronous manner.
According to MSDN:

An Async method contains asyncin its name, such as ReadAsync, WriteAsync, ReadLineAsync,
and ReadToEndAsync, etc. These async methods are implemented on stream classes such as
Stream, FileStream, MemoryStream, and on classes that are used for reading from or writing
to streams such as TextReader and TextWriter.

Listing 10-16 shows how to write and read a file asynchronously.

301

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4842-2860-9_8

CHAPTER 10 * FILE I/0 OPERATIONS

Code Snippet

Listing 10-16. Asynchronous File I/O

//Mrite to the File

FileStream file = File.Create("Sample.txt");
StreamWriter writer = new StreamWriter(file);

await writer.WriteAsync("Asynchronously Written Data");
writer.Close();

//Read From File

FileStream readFile = File.Open("Sample.txt", FileMode.Open);
StreamReader reader = new StreamReader(readFile);

string result = await reader.ReadToEndAsync();
Console.Writeline(result);

Note You can find more on “Working with asynchronous File 1/0” from the following link: https://msdn.
microsoft.com/en-us/library/kztecsys(v=vs.110).aspx

Summary

1. Drivelnfo class gives you support to interact with Drives.

2. C# gives Directory and DirectoryInfo Classes to interact with Directories.
Directory class is static and preferable for single operations, whereas
DirectorylInfo is preferable for multiple operations.

3. File and FileInfo: both classes are used to interact with Files. File Class is static
and preferable for performing a single operation on a file, whereas FileInfo is for
multiple operations.

4. Stream is an abstract class used for writing and reading bytes. It has three main
tasks: Reading, Writing, and Seeking.

5. FileStream drives from the abstract class Stream; it’s mainly used to write and
read bytes in the file.

6. MemoryStream drives from the abstract class Stream; it's mainly used to write
and read bytes from memory.

7. Buffer is a block of bytes in memory used to cache the data. BufferedStream needs
stream to be buffered, i.e., a stream of bytes in memory for caching the data.

8. StringReader and StringWriter classes are used to read and write characters to
and from the string.

9. BinaryReader and BinaryWriter classes are used to read and write values as
Binary Values.

10. StreamWriter drives from TextWriter; it’s used to write character/characters to the
stream. StreamReader drives from TextReader; it’s used to read bytes or string.

11. For communication over a network, we use WebRequest class to send the request
for information and WebResponse class to receive the response of the requested
information.

302

https://msdn.microsoft.com/en-us/library/kztecsys(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/kztecsys(v=vs.110).aspx

CHAPTER 10 * FILE I/0 OPERATIONS

Code Challenges

Challenge 1: Download and Save Image

Download any of Image and convert in bytes and save those bytes in file named ImageData in your local
space. Read those bytes from ImageData file and convert them into Image form and save obtained image in
local drive as well.

Practice Exam Questions

Question 1

You have to develop an application for an organization which reads the file and displays the content of a file.
Which code snippet will properly fulfill your requirement?:

A) string fileContent = "";
StreamReader reader = new StreamReader("data.txt");
fileContent = reader.ReadToEnd();
reader.Close();

B) string fileContent = "";
StreamReader reader = null;
using (reader = new StreamReader("data.txt"))

fileContent = reader.ReadToEnd();

C) string fileContent = "";
try
{
StreamReader reader = new StreamReader("data.txt");
fileContent = reader.ReadToEnd();

D) string fileContent = "";
StreamReader reader = new StreamReader("data.txt");
fileContent = reader.ReadToEnd();

Question 2

You need to read a file from a web server and save the content of the file locally.
Which code snippet will more preferable?:

A) WebRequest request = WebRequest.Create(remoteFileUri);
WebResponse response = request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream());
StreamWriter writer = new StreamWriter("localFile.txt");
writer.Write(reader.ReadToEnd());

303

CHAPTER 10 * FILE I/0 OPERATIONS

B) WebRequest request = WebRequest.Create(remoteFileUri);
WebResponse response = request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream());
StreamWriter writer = new StreamWriter("localFile.txt");
writer.Write(reader.ReadToEnd());
writer.Close();
reader.Close();
response.Close();

C) WebResponse response = null;
WebRequest request = WebRequest.Create("");
using (response = request.GetResponse())

StreamReader reader = new StreamReader(response.GetResponseStream());

StreamWriter writer = new StreamWriter("localFile.txt");
writer.Write(reader.ReadToEnd());

}

D) WebResponse response = null;
StreamReader reader = null;
WebRequest request = WebRequest.Create("");
using (response = request.GetResponse())
reader = new StreamReader(response.GetResponseStream());
StreamWriter writer = new StreamWriter("localFile.txt");
writer.Write(reader.ReadToEnd());

Question 3

You are working on an application that reads the file named “sample.txt” Your application takes care of the

following points when it reads the sample.txt file.
It does not make changes to the “sample” file.
It must allow other processes to access the “sample” file.
It must not throw an exception if the “sample” file does not exist.

Which code snippet should you choose to take care of said points about sample.txt?:

A) var read = File.Open("sample.txt", FileMode.Open, FileAccess.Read,

FileShare.Read);

B) var read = File.Open("sample.txt", FileMode.OpenOrCreate, FileAccess.Read, FileShare.

ReadWrite);

C) var read = File.Open("sample.txt", FileMode.Open, FileAccess.ReadWrite, FileShare.Read);

D) var read = File.Open("sample.txt", FileMode.Open, FileAccess.Read, FileShare.ReadWrite);

Answers
1. A&B
2. B
3. B

304

CHAPTER 11

Serialization and Deserialization

When communicating with remote applications, you will often exchange data with other applications.
Serialization and Deserialization of data is done before the exchange of data, when it’s received or sent.
In this chapter, we will understand the following topics:

1. Serializations and Deserialization
Binary Serialization
XML Serialization

JSON Serialization

A

Custom Serialization

Serialization and Deserialization

Serialization and Deserialization are the processes of serializing and deserializing data. C# provides different
techniques to perform these processes.

Serialization

The Process of converting an object or object graph into a stream of bytes is called Serialization. It is the
process of transforming an object into bytes or text in order to store it into any kind of storage or exchange
the object over the network.

Deserialization

The Process of converting a back stream of bytes into an object or object graph is called Deserialization.

Pictorial Representation

The process of serialization and deserialization is illustrated by a figure by which you can get to know how
this is basically performed:

© Ali Asad and Hamza Ali 2017 305
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_11

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Object/Object Graph

L —
2\ Converting Back into Object

Converting into Bytes

Serialization

Deserialization

Database Memory File

Figure 11-1. Serialization and Deserialization

Explanation

Serialization and Deserialization of data or an object is commonly used in those cases where you will often
exchange data with other applications. For example, when data is going to be sent to a web service or over a
network stream, you first have to convert data into a stream of bytes and, on the receiving side, you have to
convert it back from a stream of bytes to an object that is your main concern. This is called Serialization and
Deserialization, respectively.

The Serialized object carries an object’s data in the form of a stream along with the information of
object’s type, i.e., its version, culture, and assembly name.

The .NET Framework provides classes to help you to serialize and deserialize the object and also offers
you ways to configure your own objects.

By default, there are three serialization/deserialization mechanisms provided by .NET Framework:

1. BinaryFormatter
2. XmlSerializer
3. DataContractSerializer

BinaryFormatter is a serializer to serialize and deserialize the data in Binary format. XmlSerializer is
used to serialize and deserialize the object in an XML document. This serializer enables you to control how
objects are encoded into XML. DataContractSerializer is also used to serialize the object into an XML Stream
by using a supplied data contract.

There are also other serializers which are used to serialize and deserialize the data according to their
usage, such as:

306

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

1. DataContractJsonSerializer: Serialize the objects to the JavaScript Object
Notation (JSON) and deserialize JSON data to objects.

2. JavaScriptSerializer: Serialize and deserialize the objects for AJAX-enabled
application.

We'll explain these serialization mechanisms according to the Exam ref 70-483 point of view.

Note Methods are not serialized because serialization only serializes the data stored by an object.

Binary Serialization

Binary serialization serializes an object or data or object graph in binary format.

Binary serialization uses binary encoding for serialization to produce compact serialized data for uses
as storage or socket-based network streams.

A binary sterilized object contains serialized data along with the object’s Type information including
version, public token, culture, and assembly name.

Note Binary serialization is dependent upon a .NET Platform, i.e., to exchange a binary serialized object or
data from one application to another application, and both applications must be in a .NET platform.

Using Binary Serializer

Binary serializer uses a BinaryFormatter class to implement Binary Serialization. It is more secure

than other serializations. To perform this type of serialization, you just need to mark an item with the
SerializableAttribute. After that, you need to use the instance of Binary Serializer to serialize the object or
object graph. The following are namespaces used in Binary Serialization:

1. System.Runtime.Serialization
2. System.Runtime.Serialization.Formatters.Binary

You can serialize the object into a file or memory or database according to your need.
Listing 11-1 shows how you can configure an object for binary serialization, serialize it into file, and
then deserialize it into an object.

Code Snippet

Listing 11-1. Binary Serialization

[Serializable]
public class Teacher
{
public int ID { get; set; }
public string Name { get; set; }
public decimal Salary { get; set; }
}
//Created the Instance and initialized
Teacher teacher = new Teacher()

307

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

{
D=1,
Name = "Ijaz",
Salary = 1000
};

//Binary Serializer
BinaryFormatter formatter = new BinaryFormatter();

//Sample.bin(Binary File is Created) to store binary serialized data
using (FileStream file=new FileStream("Sample.bin",FileMode.Create))

//this function serialize the "teacher" (Object) into "file" (File)
formatter.Serialize(file,teacher);

}

Console.WriteLine("Binary Serialization is Successfully Done!");
//Binary Deserialization
using (FileStream file=new FileStream("Sample.bin",FileMode.Open))

{
}

Console.WriteLine("Binary Deserialization is Successfully Done!");

Teacher dteacher=(Teacher)formatter.Deserialize(file);

Explanation

In binary serialization, all the fields can be serialized, even those that are private. You can prevent fields from
being serialized by using a NonSerialized attribute. For example, you don’t want to serialize the field Salary
of Teacher. You can do this:

[Serializable]

public class Teacher

{
public int ID { get; set; }
public string Name { get; set; }
[NonSerialized]
public decimal Salary;

Binary serialization is stricter than other serializations. When the Binary Serializer can’t find a specific
field, it throws an exception. You can use OptionalFieldAttribute to make sure that the binary serializer
knows that the field is added in later versions and the current serialized object will not contain this field.

Note Constructor does not execute during Binary deserialization.

XML Serialization

XML serialization serializes an object into XML format or an XML stream. In XML serialization, only public
fields or properties can be serialized. Unlike Binary serialization, it does not include a serialized object’s type

308

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

information. For example, if you have a serialized object of type Teacher, then there is no guarantee that it
would be deserialized into an object of type Teacher. That's why XML Serialization does not store an object’s
type information.

According to MSDN:

XML serialization does not convert methods, indexers, private fields, or read-only
properties (except read-only collections). To serialize all of an object's fields and properties,
both public and private, use the DataContractSerializer instead of XML serialization.

Using XML Serializer

XML serialization uses XmlSerializer class to implement XML serialization. XmlSerializer is less strict than
BinarySerializer, but it does not have best performance. It also does not maintain an object’s information
and you cannot serialize private fields.

To perform XML serialization, you mark your type with a Serializable attribute which tells the NET
framework that type should be serializable. It will check your object and object graph (all the objects it
references) to make sure that it will serialize all the connected objects.

Tip XML serialization can be done without specifying a Serializable attribute on the type, but it is bad approach.

Listing 11-2 shows how you can configure an object for XML serialization, serialize it into a file and then
deserialize it into an object.

Code Snippet

Listing 11-2. XML Serialization using XmlSerializer

[Serializable]
public class Teacher

{
public int ID { get; set; }
public string Name { get; set; }
public long Salary { get; set; }

}

XmlSerializer xml = new XmlSerializer(typeof(Teacher));
using (var stream = new FileStream("Sample.xml", FileMode.Create))

xml.Serialize(stream, t);

}
Console.WritelLine("Data has been Serialized!");

Teacher teacher = null;
using (var stream = new FileStream("Sample.xml", FileMode.Open))

{
XmlSerializer xml = new XmlSerializer(typeof(Teacher));
teacher = (Teacher)xml.Deserialize(stream);

309

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Console.WritelLine(teacher.ID);
Console.WritelLine(teacher.Name);
Console.Writeline(teacher.Salary);

Console.WritelLine("Data has been Deserialized!");

Serialized object

The serialized object in XML format looks like:

<?xml version="1.0"?>
<Teacher xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<ID>2</ID>
<Name>Ahsan</Name>
<Salary>20000</Salary>
</Teacher>

Explanation

XML serialization can be configured to get more control over the type to be serialized using attributes
provided by the System.Xml.Serialization namespace. The following are important attributes (with their use)
that are commonly used:

1. XmlRoot: Applied on Type, which tells the compiler that this is going to be the
main/parent Node of a Serialized object in XML.

2. XmlAttribute: Applied on any of the public fields mapped into an attribute on its
parent node.

3. XmlElement: Applied on any of the public fields mapped into an element of a
parent node.

4. XmlIgnore: Applied on any of the public fields which will not be serialized.

5. XmlArray, XmlArrayltem: These two (XmlArray and XmlArrayltem) can be
applied on any of the public fields of the type collection for serialization.

By default, each public field of your type is serialized as XmlElement. Using these above-mentioned
attributes, you can map your object into proper XML format.
Listing 11-3 shows how to configure your type more for XML serialization.

Code Snippet

Listing 11-3. Controlled XML serialization

[Serializable]

[XmlRoot ("Teacher")]

public class teacherClass

{
[XmlAttribute("ID")]
public int id { get; set; }
[XmlElement("Name")]
public string name { get; set; }
[XmlIgnore]
public long salary { get; set; }

310

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

[XmlElement("Students")]
public studentClass st { get; set; }

}
[Serializable]
public class studentClass
{
[XmlAttribute("RollNo")]
public int rollno { get; set; }
[XmlElement("Marks")]
public int marks { get; set; }
}
//Serialization
teacherClass t = new teacherClass
{
id = 2,
name = "Ahsan",
salary = 20000,
st = new studentClass
{
rollno = 1,
marks = 50
}
};

XmlSerializer xml = new XmlSerializer(typeof(teacherClass));
using (var stream = new FileStream("Sample.xml", FileMode.Create))

{
}

Console.WriteLine("Data has been Serialized!");

xml.Serialize(stream, t);

//Deserialization
teacherClass teacher = null;
using (var stream = new FileStream("Sample.xml", FileMode.Open))

XmlSerializer xml = new XmlSerializer(typeof(teacherClass));
teacher = (teacherClass)xml.Deserialize(stream);

}

Console.WritelLine(teacher.id);
Console.WritelLine(teacher.name);
Console.Writeline(teacher.salary);
Console.Writeline(teacher.st.rollno);
Console.Writeline(teacher.st.marks);
Console.WritelLine("Data has been Deserialized!");

311

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Serialized Object

The serialized object in XML format looks like:

<?xml version="1.0"?>
<Teacher xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" ID="2">
<Name>Ahsan</Name>
<Students RollNo="1">
<Marks>50</Marks>
</Students>
</Teacher>

This is serialization of a teacherClass object and all the objects connected with it (object graph).
As in code, you can also configure Attributes to grasp more control over the object to be serialized.

Note Type must be public for XML serialization, as XmlSerializer serializes only public types or members.

Using DataContract Serializer

DataContractSerializer serialize an object into an XML format using a supplied data contract. When working
with WCE your types are serialized so that they can be sent to other applications. This serialization is done
by DataContractSerializer or DataContract/sonSerializer (discussed next).

The main differences between DataContractSerializer and XmlSerializer are:

1. Instead of using Serializable Attribute, you use DataContract attribute.
2. Members are not serialized by default as in XmlSerializer.

3. All the members you want to serialize must be explicitly marked with a
DataMember attribute.

4. Toignore a member to be serialized, you use the IgnoreDataMember attribute
instead of XmlIgnore.

5. Private fields are also serializable by DataContractSerializer, which is not
possible in XmlSerializer.

6. In DataContractSerializer, you use the WriteObject() method to serialize an
object and ReadObject() method to deserialize the stream into an object.

Note WCF uses DataContractSerializer as the default Serializer.

Listing 11-4 shows how to serialize and deserialize an object.

Code Snippet

Listing 11-4. XML Serialization using DataContractSerializer

[DataContract]
public class Teacher

{
312

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

[DataMember]

private int id = 1;
[DataMember]
public string name { get; set; }
[IgnoreDataMember]
public long salary { get; set; }

}

//Serialization
DataContractSerializer dataContract = new DataContractSerializer(typeof(Teacher));
using (var stream = new FileStream("Sample.xml", FileMode.Create))

dataContract.WriteObject(stream, t);
}

Console.WritelLine("Data has been Serialized!");

//Deserialization
Teacher teacher = null;
DataContractSerializer dataContract = new DataContractSerializer(typeof(Teacher));

using (var stream = new FileStream("Sample.xml", FileMode.Open))

teacher = (Teacher)dataContract.ReadObject(stream);
}

Console.WriteLine("Data has been Deserialized!");

You can use DataContractSerializer from the System.Runtime.Serialization namespace in the same way
you used XmlSerializer and BinarySerializer (BinaryFormatter) with the difference of attributes or methods
to serialize and deserialize.

Note WCF (Windows Communication Foundation) is a framework for building a service-oriented
application. This Topic is discussed in Chapter 13 “Accessing Remote Data.”

JSON Serialization

JSON Serialization serializes an object into JSON (JavaScript Object Notation) format, an efficient encoding
format that is specifically useful when sending a small amount of data between a Client (Browser)
and AJAX-enabled Web services.

JSON Serialization is automatically handled by WCF when you use DataContract Types in service
operations that are exposed over AJAX-enabled endpoints.

However, in some cases you may need to execute this serialization manually with JSON serialization, as
this is a more lightweight medium to store data into some storage or send over the network.

Using DataContract]JsonSerializer

DataContractJsonSerializer is used to convert an object into JSON data and convert back JSON data into
an object. DataContractJsonSerializer is a class provided by .NET in the System.Runtime.Serialization.Json
namespace.

313

http://dx.doi.org/10.1007/978-1-4842-2860-9_13

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Like DataContractSerializer, DataContractJsonSerializer provides a WriteObject() method for
serialization and a ReadObject() method for deserialization. The rest of the procedure for JSON Serialization
is the same as the others. It is mainly used with WCE

Listing 11-5 shows JSON serialization using DataContractjsonSerializer.

Code Snippet

Listing 11-5. JSON Serialization using DataContractJsonSerializer

[DataContract]
public class Teacher

{

[DataMember]

private int id = 1;

[DataMember]

public string name { get; set; }
[DataMember]

public long salary { get; set; }

}

//Serialization
DataContractJsonSerializer dataContract = new DataContractJsonSerializer(typeof(Teacher));
using (var stream = new FileStream("Sample.json", FileMode.Create))

dataContract.WriteObject(stream, t);
}

Console.Writeline("Data has been Serialized!");

//Deserialization

Teacher teacher = null;

DataContractJsonSerializer dataContract = new DataContract]sonSerializer(typeof(Teacher));
using (var stream = new FileStream("Sample.json", FileMode.Open))

teacher = (Teacher)dataContract.ReadObject(stream);

}

Console.WriteLine("Data has been Deserialized!");

Serialized Object
{"id":1,"name": "Ahsan","salary":20000}

Private members are also serialized in Json Serialization.

Note DataContract/sonSerializer supports the same types as DataContractSerializer.

Using JavaScriptSerializer

JavaScriptSerializer is a class provided by .NET in the System.Web.Script.Serialization namespace found in
the System.Web.Extension assembly used to serialize and deserialize an object into Json format for
AJAX-enabled applications.

314

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Listing 11-6 shows a basic example of how to serialize and deserialize an object using
JavaScriptSerializer.

Note There is no attribute required for the object’s Type to be serialized when using JavaScriptSerializer.

Code Snippet

Listing 11-6. JSON Serialization using JavaScriptSerializer

private class Teacher

{
private int id { get; set; }
public string name { get; set; }
public long salary { get; set; }

}

//Serialization

JavaScriptSerializer dataContract = new JavaScriptSerializer();
string serializedDataInStringFormat = dataContract.Serialize(steacher);
Console.WritelLine("Data has been Serialized!");

//Deserialization
Teacher dteacher = null;

dteacher = dataContract.Deserialize<Teacher>(serializedDataInStringFormat);

Console.WriteLine("Data has been Deserialized!");

Note Private members cannot be serialized using JavaScriptSerializer for Json Serialization.

Custom Serialization

Custom serialization allows an object to control its own serialization and deserialization. One of the ways to
implement a custom serialization is to implement an ISerializable interface on an object’s Type.

Using ISerializable

ISerializable is an interface that allows you to implement custom serialization. This interface involves the
GetObjectData() method and a special constructor that is used when the object is deserialized.
Listing 11-7 shows custom serialization.

315

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Code Snippet

Listing 11-7. Custom serialization using Iserializable interface

[Serializable]
public class Teacher : ISerializable
{
public int ID { get; set; }
public string Name { get; set; }
public Teacher()
{
}
protected Teacher(SerializationInfo info,StreamingContext context)
{
this.ID = info.GetInt32("IDKey");
this.Name = info.GetString("NameKey");

}

[SecurityPermissionAttribute(SecurityAction.Demand,SerializationFormatter = true)]
public void GetObjectData(SerializationInfo info, StreamingContext context)
{
info.AddValue("IDKey", 1);
info.AddValue("NameKey", "Hamza")
}
}

Explanation

GetObjectData() method is called during serialization and you need to populate the SerializationInfo
provided with the method call. Add the variable or value to be serialized with the name associated with
it in the AddValue() method of SerializationInfo’s object. You can use any text as a name associated
with a value or variable. You can add any or a few number of variables provided with the method call
in SerializationInfo’s object. These provided variables or values will be serialized. With deserialization,
a special constructor would call and serialized values deserialize by calling the Get method of the
SerializationInfo’s object.

Serialization Performance Comparison

The following table shows the rough idea of performance of serialization techniques by size of data (in bytes)

and time (in milliseconds) taken to serialize and deserialize an object or object graph:

Table 11-1. Performance Comparison of different Serialization techniques

Binary XML Data Contract
Size (Small) 669 298 370
Serialize 0.0210 0.0218 0.004
Deserialize 0.0194 0.0159 0.0127
Size (Large) 204,793 323,981 364,299
Serialize 13.7000 5.5080 4.4438
Deserialize 19.3976 7.8893 11.4690

316

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Summary

1. The process of converting an object or object graph into a stream of bytes is
called Serialization, and the reverse process is called Deserialization.

2. Binary Serialization is performed using a Serializable attribute. It is more secure
than other serializations but restricted to a .NET Platform.

3. XML Serialization serialized only public members and is not restricted to a
.NET Platform. An XML Serialized object is readable as compared to a Binary
Serialized object, which is not readable to humans.

4. XmlSerializer and DataContractSerializer: both classes can be used for XML
Serialization.

5. JSON serialization is considered a fast serialization approach. It is lightweight
compared to XML and Binary Serialization. As with XML serialization, you can
just serialize public members.

6. DataContractJsonSerializer and JavaScriptSerializer: both classes can be used for
JSON serialization.

7. Custom Serialization can also be performed by implementing an ISerializable
interface.

Code Challenges

Challenge 1: Perform Deserialization

You are given a sample file of serialized data in XML format (taken from MSDN); you need to deserialize the
data using the appropriate deserialization technique.

Practice Exam Questions

Question 1

You are developing an application that retrieves Person type data from the Internet using JSON. You have
written the following function for receiving the data so far:

serializer.Deserialize<Person>(json);
Which code segment should you use before this function?
A) DataContract]sonSerializer serializer = new DataContractJsonSerializer(typeof(Person));
B) DataContractSerializer serializer = new DataContractSerializer(typeof(Person));
C) JavaScriptSerializer serializer = new JavaScriptSerializer();

D) NetDataContractSerializer serializer = new NetDataContractSerializer();

317

CHAPTER 11 * SERIALIZATION AND DESERIALIZATION

Question 2
You need to store a large amount of data in a file. Which serializer would you consider better?
A) XmlSerializer
B) DataContractSerializer
C) DataContractJsonSerializer
D) BinaryFormatter

E) JavaScriptSerializer

Question 3

You want to serialize data in Binary format but some members don’t need to be serialized. Which attribute
should you use?

A) Xmlignore
B) NotSerialized
C) NonSerialized

D) Ignore
Answers

1. C

2. D

3. C

318

CHAPTER 12

Consume Data

To work with data is an important part of developing an application. A normal application stores data in
memory but when this application ends, data is lost. In this case, when you don’t want to lose your data, the
.NET framework gives you the interactive way to store your data in a persistent way. This can be achieved by
interacting with a database or external web service to insert or retrieve data whenever you require.

In this chapter, we will learn about:

1. Working with a database
2. Consuming XML and JSON data

3. Working with a Web service

Working with a Database

The .NET framework provides the namespace System.Data.dll, using the classes to interact with relational
database systems. These classes come under ADO.NET, in which there are three conceptual parts:

1. Connected Layer
2. Disconnected Layer

3. Entity Framework

ADO.NET

ADO.NET is a set of object-oriented libraries used to interact with a database. It enables you to connect with
a database and perform different database-oriented operations on it, such as a CRUD operation (Create,
Read, Update, and Delete data). According to MSDN:

“ADO.NET is a set of classes that expose data access services for .NET Framework
programmers. ADO.NET provides a rich set of components for creating distributed, data-
sharing applications. It is an integral part of the .NET Framework, providing access to
relational, XML, and application data.”

System.Data provides different Types (Class or interface, etc.) that provide data access for different data
providers.

© Ali Asad and Hamza Ali 2017 319
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_12

CHAPTER 12 © CONSUME DATA

Data Providers

The .NET framework allows you to work with different types of databases, for example, Microsoft SQL Server,
Oracle, and MySQL database. System.Data.dll provides different Data providers to work with different
databases. Data Providers are used for connecting to a database, executing a command, and retrieving a
result. For example, if you want to work with an MS SQL server database, .NET gives you a Data Provider for
this, i.e., the System.Data.SqlClient namespace (provides data access for Microsoft SQL server database)
and the System.Data.OleDb namespace. For more information on Data Providers, visit:

https://msdn.microsoft.com/en-us/1library/a6cd7c08(v=vs.110).aspx

We will discuss the interaction with an MS SQL server database in this chapter.

Connection

After deciding the data provider, connection to a specific database is important to work with. You must establish
a connection with your database for further interaction. ADO.NET provides classes to establish connection
with a specific database. A connection string is required which contains all the information to connect with a
database including data location, database name, data provider, and authentication against database.

DbConnection class is a base class that provides the connection-related functionality. SqglConnection is
derived with DbConnection class and can be used for connection with an SQL Server database. To connect
with a specific database using a connection string, you must open the connection to proceed further.

The following steps show how to connect with an MS SQL server database:

Step 1:

Right-click on your project in Visual Studio and Click on Add » New Item. Select DataSet and name it
whatever you like (Sample.xsd in this example).

Add New Item - BookSnippets ? =
4 |nstalled Sort by: Default - 53 i= Search Installed Templates (Ctrl+E p-
Visual C# Ity L3 - -\ .
4 rsuca . ems KJ Code File Visual C2 lteme Type: Visual C# tems
Ou 7 A DataSet for using data in your
ata AR
Genersl v Crystal Reports Visual C# items application
o C Fil Visual C# |
[=
Windows Forms I * ursor Fie isual C# ftems
WPF i
vV 2
Reporting . Custom Control Visual C# ltems
SQL Server ? -
Storm Rems i DataSet Visual C= [tems
Workflow ca
I Debugger Visualizer Visual C= [tems
b Online
q'? EF 5.x DbContext Generater Visual C# tems
q—? EF 6.x DbContext Generator Visual C# [tems
rj HTML Page Visual C# Items
o
lcon File Visual C# [tems
.ﬁ Installer Class Visual C# tems ™
Click here to go online and find templates
MName: Samplq!usd

Add Cancel

Figure 12-1. Choose DataSet
320

https://msdn.microsoft.com/en-us/library/a6cd7c08(v=vs.110).aspx

CHAPTER 12 ' CONSUME DATA

After this, the Sample.xsd window appears in front of you.
Step 2:

Add Data Connection by going to Server Explorer. In Server Explorer, right-click on Data Connections
» Add Connection; a wizard will open where you need to specify Server name and select a database
which you made in SQL server. In this example, I have added School database, having two tables: Student
(StudentID, StudentName) and Class (ClassID, ClassName, StudentID: as foreign key).

Add Connection ? *

Enter information to connect to the selected data source or click "Change” to choose a different
data source and/or provider.

Data source:

Microsoft SQL Server (SqiClient) Change...

Server name:

” v Refresh

Log on to the server

Authentication: | Windows Authentication el

Save my password
Connect to a database

Select or enter a database name:

Attach a database file:

Advanced...

Test Connection 0K Cancel

Figure 12-2. Choose Data Source after selecting DataSet

After selecting database, Click OK.
Step 3:

Drag the added connection (from the Server Explorer) in Sample.xsd (the window open in front of you)
and Save the Sample.xsd.
321

CHAPTER 12 © CONSUME DATA

Samplexsd # X Program.cs

Use the Dataset Designer to visually create and edit typed datasets.
Drag database items from Server Explorer or the DataSet Toolbox onto the design surface, or right-click here to add new items,

Figure 12-3. Drag added Database from Server Explorer into Sample.xsd

Step 4:

As the components are added, now you can interact with your database. Listing 12-1 shows how to
connect with an added database:
Listing 12-1. Connection in C#

string connectionString = "YOUR CONNECTION STRING HERE";
SqlConnection con = new SqlConnection(connectionString);
con.Open();

Note To get a connection string, right-click on your Connection (from Server Explorer) and click on
properties. Search for the Connection String property, where you find your connection string. Just copy and
paste in your code.

You can also build your connection string dynamically by using the provided class
SqlConnectionStringBuilder. Listing 12-2 shows dynamic building of a connection string:

322

CHAPTER 12 ' CONSUME DATA

Listing 12-2. Dynamic building of a connection string

SqlConnectionStringBuilder builder = new SqlConnectionStringBuilder();
builder.DataSource = "";

builder.InitialCatalog = "";

builder.IntegratedSecurity = true;

string connectionString = builder.ToString();

Note You must close the connection after performing the operation. Having connections open for too long
is a problem, as other users can’t connect . The server allows a specific number of connections and, if the limit
is exceeded, it will not allow any other user to connect due to the busyness of the already allotted connections
(that are still open).

Command

ADO.NET provides the class SqlCommand, used to execute statements (commands/queries) against the
database. By using this class, you can execute insert, delete, update, or stored procedure commands. Listing 12-3
shows how to give command of a specify query:

Code Snippet

Listing 12-3. Command in C#
string command = "select * from Student";
SqlCommand cmd = new SqlCommand(command,con);

SqlCommand requires a command (statement/query) to execute and a connection (connection string)
on which a written command is going to execute. This code knows which command to execute on which
connection (in other words, what to do using which path).

Conceptual parts of ADO. NET

Conceptually, ADO.NET consists of three layers, i.e., the different ways of interaction with a database. Each
layer has its own suitability according to the scenario. The details of these layers are described below.

Connected Layer

In a connected layer, you connect to a database as a data source and execute queries by writing SQL. These
queries are used by ADO.NET and forwarded to your database of choice.

In this way of interacting with a database, you normally use Connection, Command, and DataReader
objects.

323

CHAPTER 12 © CONSUME DATA

ExecuteNonQuery

ExecuteNonQuery is a method performed on a Command (SqlCommand) object used to execute the
statement specified by a Command object and does not return result set(s) but a number of rows affected in a
database by query execution. It is basically called on a Command object, having the query of insert, delete,
and update. These queries do not return any record but a number of rows affected; that’s why these types of
queries are executed by ExecuteNonQuery Method.

Listing 12-4 shows the example of ExecuteNonQuery:

Code Snippet

Listing 12-4. ExecuteNonQuery on Insert Command

string connectionString = "YOUR CONNECTION STRING HERE";
SqlConnection con = new SqlConnection(connectionString);
con.Open();

string command = "Insert into Student values(1,'Hamza Ali')";
SqlCommand cmd = new SqlCommand(command, con);
int result = cmd.ExecuteNonQuery();
con.Close();
if (result > 0)
Console.WritelLine("Data is Inserted");
else
Console.WriteLine("Error while inserting");

This code basically inserts data in a Student table. ExecuteNonQuery() returns the number of affected rows.

Tip When database related work is done, try to close the connection immediately. It is recommended to
use a Using block in this case.

ExecuteScalar

The ExecuteScalar method is also performed on a Command’s object in a case where you write queries that
return a single value. This is the case in which you use aggregate functions in your queries.
Listing 12-5 shows how to use the ExecuteScalar method:

Code Snippet

Listing 12-5. ExecuteScalar on aggregate function
string con = "YOUR CONNECTION STRING HERE";
string command = "select count(*) from Student";
SqlCommand cmd = new SqlCommand(command, con);
var noOfStudents = cmd.ExecuteScalar();

con.Close();
Console.WritelLine(noOfStudents);

ExecuteScalar returns a single value of type Object which you can cast on the corresponding type.

324

CHAPTER 12 ' CONSUME DATA

ExecuteReader

The ExecuteReader method is also called on a Command’s object where you need to retrieve the data, i.e.,
in the case of a “select” query. This method returns an SqlDataReader object that remains connected to a
database the whole time the reader is open. SqlDataReader is a forward-only resultset, which means you
cannot move to any previous record and can read one record at a time. You can read the specific column of a
table by index number or column name. Listing 12-6 shows the use of the ExecuteReader method:

Code Snippet

Listing 12-6. ExecuteReader in Select Command

string con = "YOUR CONNECTION STRING HERE";

string command = "select * from Student";
SqlCommand cmd = new SqlCommand(command, con);

SqlDataReader reader = cmd.ExecuteReader();

int StudentID = 0;
string StudentName = null;
if (reader.HasRows)
{
while (reader.Read())
{
StudentID = int.Parse(reader[0].ToString());//0 index means first clm in the table which
is StudentID
StudentName = reader["StudentName"].ToString();//it will fetch the value of provided clm
name
}
}

reader.Close();
con.Close();

Console.WriteLine("ID is: " + StudentID);
Console.WriteLine("Name is: " + StudentName);

SqlDataReader provides some properties like HasRows (to check if an SqlDataReader object has a row/
rows or not), FieldCount, IsClosed, Item[Int32], and Item[string].

The last two properties are indexers which we have used in the above example. These are used to fetch a
specific column value based on its name(string) or index number(int).

Read() method reads the record from a database and is ready to read for the next, while the loop iterates
and execution takes place for the next record and so on until there is the last record and the loop ends.

You must close the reader object and then close the connection object. Forgetting to close the
connection can hurt performance. You can use the “Using” block to avoid such things.

Note You can use the OleDbDataReader class in place of the SqlDataReader class for retrieving data
from Microsoft Access.

325

CHAPTER 12 © CONSUME DATA

ExecuteXMLReader

The ExecuteXmlReader method is also called on a Command’s object and is the same as ExecuteReader
but the difference is that it returns an XmlReader object used to represent data as XML.

Disconnected Layer

In a disconnected layer, you normally use DataSets and DataTables that copy the structure of a relational
database in memory. A DataSet is created in the result of an execution of a query against a connected
database. It can be manipulated in memory and changes to a database take place using DataAdapter.
DataTable and DataSets are another way to retrieve results from a database.

DataTable

DataTable is the same as DataReader except DataTable can also move forward and back. It is disconnected
from a database and you can make changes to data in DataTable and commit or update a database with
these changes

DataSet

DataSet is the container of DataTables. You can write a query that returns multiple resultsets and can be
contained in a DataSet. You can then perform further operations on a received DataSet, such as filtering or
sorting, etc. These updatings take place in memory.

DataAdapter

DataAdapter is the important object when you work with a disconnected layer. It acts like a bridge between
data in memory and a database. DataAdapter populates a DataTable or DataSets and reconnects data in
memory to a database. You can perform insert, update, delete, or read query while the data is in memory
and then reconnect to a database to commit the changes.

Listing 12-7 shows how to perform database-oriented operations using a disconnected layer:

Code Snippet

Listing 12-7. Disconnected layer operations

string con = "YOUR CONNECTION STRING HERE";

string command = "select * from Student";
SqlDataAdapter ad = new SqlDataAdapter(command, con);

DataTable tbl = new DataTable();
ad.Fill(tbl);//Now the data in DataTable (memory)
con.Close();//connection closed

foreach (DataRow item in tbl.Rows)

{

Console.WriteLine("ID is: " + item[0]);
Console.WriteLine("Name is: " + item[1]);

}

326

CHAPTER 12 ' CONSUME DATA

When DataAdapter’s Fill method is called, a query will be executed and the Fill() method will populate
the DataTable(get the data and map into DataTable). DataTable doesn’t need to keep open the connection
to populate the data, which is not the case for DataReader (in a connected layer). This is the beauty of a
disconnected layer, and it has better performance than a connected layer as it deals with the data present in
memory, which is quickly accessible.

You can also use DataSet instead of DataTable when expecting multiple resultsets. The working is the
same except it can return multiple tables. DataSet has the property of Table by which you can iterate over
specific table data.

As stated, you can perform further operations on DataTable or DataSet, such as insert, delete, etc.
(Data in memory), and these operations are fast in performance compared to operations performed in a
Connected layer. As in a connected layer, database is connected and ADO.NET architecture takes the query
and map into a database (which is time-consuming compared to map) or performs some function on the
data which is present in memory but not at some external location (the case of a disconnected layer).

Listing 12-8 shows insertion of data in a DataTable and commits the changes to a database:

Code Snippet

Listing 12-8. Insertion of data (disconnected layer)

string connectionString = "YOUR CONNECTION STRING HERE";
SqlConnection con = new SqlConnection(connectionString);
con.Open();

string command = "select * from Student";//Currently has One Row(for example)
SqlDataAdapter ad = new SqlDataAdapter(command, con);

DataTable tbl = new DataTable();
ad.Fill(tbl);//Now the data in DataTable (memory)

//Data in Memory (One Row)

foreach (DataRow item in tbl.Rows)

{
Console.WriteLine("ID is: " + item[0]);
Console.WriteLine("Name is: " + item[1]);

}

//New Record to add in DataTable
DataRow newRow = tbl.NewRow();
newRow["StudentID"] = 2;

newRow["StudentName"] = "Ali Asad";
tbl.Rows.Add(newRow);

//Two Rows(As new row added to DataTable)
foreach (DataRow item in tbl.Rows)
{
Console.WriteLine("ID is: " + item[0]);
Console.WriteLine("Name is: " + item[1]);

}

//Now newRow has to add in Database(Pass newRow Parameters to this insert query)
string newCommand = @"Insert into Student(StudentID,StudentName)
Values (@StudentID,@StudentName)";

327

CHAPTER 12 © CONSUME DATA

SqlCommand insertCommand = new SqlCommand(newCommand, con);

//Create the parameters

insertCommand.Parameters.Add(new SqlParameter("@StudentID", SqlDbType.Int, Int32.
MaxValue, "StudentID"));

insertCommand.Parameters.Add(new SqlParameter("@StudentName", SqlDbType.VarChar,
40,"StudentName"));

//Associate Insert Command to DataAdapter so that it could add into Database
ad.InsertCommand = insertCommand;

ad.Update(tbl);
con.Close();

In this example, a Parameter property of a Command object is used, which takes new parameter-
related data, such as column name, column size, and parameter name. “newRow” added in DataTable (new
record in memory) but didn’t add in database, but later used the Update() method of DataAdpater, which
reconnects to a database to take changes (i.e., updated DataTable mapped to a database).

You can perform further operations likewise, i.e., to delete data, write a delete query, and associate it
with a DataAdapter object like da.DeleteCommand="";, etc.

Entity Framework

The connected and disconnected layers force you to treat data in the manner of a physical schema of a
database. These layers are tightly coupled with the relational database, as the user needs to use SQL to
perform queries, and to keep in mind connection, command, DataReader, DataSet, and DataAdapter, etc.
Unlike these layers, Entity Framework gives you the object-oriented way to interact with a database. Using
this conceptual layer of ADO.NET, you don’t need to worry about connection or command-like objects. This
kind of stuff is automatically handled by Entity Framework.

Like ADO.NET, ADO.NET Entity Framework is also a set of libraries for interaction with a database in a
different conceptual manner.

Entity Framework is an object relational mapping framework for ADO.NET. It has a graphical view
on which you can drag and drop database objects and update this view whenever there is a change in the
database. This is called the Object Relational Mapper (ORM). This is a preferable approach to interacting
with a database for those who have/haven’t weak knowledge of SQL, because it gives object-oriented
interaction with a database as it maps the database schema into C# classes. It also makes the code short to
interact with the database and handle a lot of things by itself.

LINQ is used instead of SQL and you can use one of LINQ’s types with your data source provided by
ADO.NET (Database).

Note When you perform LINQ queries to your ADO.NET data source, the entity framework runtime
generates a proper SQL statement on your behalf. But it slows down the performance as compared to the
connected and the disconnected layer.

Entity Framework (EF) normally has four approaches to use:
1. EF Designer from database

2. Empty EF Designer model
328

CHAPTER 12 ' CONSUME DATA

3. Empty Code First model
4. Code first from database

These approaches can be used by using Entity Data Model Wizard but the “Code first from database”
approach can also be used without the Entity Data Model Wizard.

Every approach has its own suitability. We will take “EF Designer from database” approach to interact
with a database.

To use the Entity Framework approach (EF Designer from database) to interact with a database using
the Entity Data Model Wizard:

Step 1:

Right-click on your project and click on Add » New Item. Select “ADO.NET Entity Data Model’; name it
whatever you like (in this example [named it Sample), and click on the “Add” button.

Add New Item - BookSnippets ? X
4 Installed Sort by: Default -| §#|i= Search Installed Templates (Ctri+E P~
Visual C# It = n . |
4 Visua . ems b Class Vicual C2 ems Type: Visual C# ltems
;u‘ s 7 A project item for creating an ADO.NET i
ata i
e o0 Interface Visual C# ltems Entity Data Model. !
. {
b Web 1
Windows Forms Windows Form Visual C# ltems |
v {
WPF |
Reporting Q User Control Visual C# ltems
SQL Server
Stomn hems l“, | Component Class Visual C= ltems
Workflow ®
) User Control (WPF) Visual C2 ltems
b Online o
About Box Visual C# tems
q-? ADO.NET Entity Data Model Visual C# ltems
fﬁ Application Cenfiguration File Visual C# Items
Application Manifest File Visual C# ftems
—ca
[i™1 Assembly Information File Visual C# ltems
Click here to go online and find templates,
MName: _Sampl4

—_—
Add | Cancel |

Figure 12-4. Choose ADO.NET Entity Data Model
Step 2:

After clicking the “Add” button, the next step is to choose Model Contents. Choose the first one, EF
Designer from database, and click the “Next” button.

329

CHAPTER 12 © CONSUME DATA
Entity Data Model Wizard X

i_. , Choose Model Contents

What should the model contain?

(VNN Empty EF Empty Code Code First
from Designer First model from

database model database

| Creates a model in the EF Designer based on an existing database. You can choose the database connection,
settings for the model, and database objects to include in the model. The classes your application will
interact with are generated from the model.

Next > Cancel

Figure 12-5. Choose Model Contents

Step 3:

After clicking on the “Next” button, the next step is to choose Data Connection. Choose from the
dropdown box (Data Connection will be chosen and a Connection string will be made. Note the name below
in the TextBox that would be the object of your database. You can change this name. I named it SchoolDB)
and click the “Next” button, (move to Step 5); if not, then click on the “New Connection” button from the
window in front of you (move to Step 4).

Step 4:

If you clicked on the “New Connection” button, then specify the server name and database and click the
“OK” button.

330

CHAPTER 12 ' CONSUME DATA

Connection Properties ? X

Enter information to connect to the selected data source or click "Change” to choose a different
data source and/or provider.

Data source:
lMicrosoft SQL Server (SqlClient) . Change...

Server name:

|| v Refresh

Log on to the server

Authentication: | Windows Authentication v

Save my password
Connect to a database

Select or enter a database name:

Attach a database file:

Advanced...

Test Connection OK Cancel

Figure 12-6. Choose Data Source/Connection String

(The "Connect to a database" panel will enable for entry when you specify the server name.) Data
Connection will be selected and a connection string will be made. Click the “Next” button.

Step 5:

After clicking the “Next” button, choose your Database Objects and Settings. There are checkboxes of
“Tables’) “View’, and “Stored Procedures and Functions”. Select the checkbox or checkboxes on the Database
Objects which you want to add.

331

CHAPTER 12 © CONSUME DATA

i p Choose Your Database Objects and Settings

Which database objects do you want to include in your model?

ey a5
[Cg@ Views

[CJep Stered Procedures and Functions

[Pluralize or singularize generated object names

B4 Include foreign key columns in the model

Model Namespace:

LSchooIModel]

< Previous MNext Cancel

Figure 12-7. Choose your Database Objects and Settings

I select the “Tables” in this example. After selecting, click the “Finish” button.
Wizard is now finished. Required references and a file named “Sample.edmx” shall be added in your
projects.

332

CHAPTER 12

Sample.edmx [Diagram1] & X

CONSUME DATA

= Properties
P StudentlD
_ & StudentName

= Properties
¢ ClassiD

= Navigation Properties

¥ Classes & ClassName

& StudentlD

= Navigation Properties
¢=) Student

Figure 12-8. The edmx file of added Database

Now you are ready to interact with your database.
Listing 12-9 shows how you can get all the student data using Entity Framework:

Code Snippet

Listing 12-9. Read data using EF

//Database object
SchoolDB db = new SchoolDB();

//LINQ query to get students
var students = (from p in db.Students
select p).TolList();

foreach (var student in students)

{

Console.WriteLine("ID is: " + student.StudentID);
Console.WriteLine("Name is: " + student.StudentName);

}

PP «

-
*
."l‘

333

CHAPTER 12 © CONSUME DATA

Just the code! This is the power of Entity Framework. You don’t need anything else except to work with
arelative thing only. SchoolDB is a name that represents your database. It contains all the things inside your
database. You can use its object to access or use database things, such as to access tables, etc.

Listing 12-10 shows how you can add a record (new student) into a student table using EF:

Code Snippet

Listing 12-10. Insertion of data using EF

//Database object

SchoolDB db = new SchoolDB();
//Add new Student

Student st = new Student();
st.StudentID = 3;
st.StudentName="Mubashar Rafique";

db.Students.Add(st);
db.SaveChanges();

Console.WritelLine("Student Added!");

It is as simple as adding a list item in List. “db” is the object of the database and you can access its tables
like db.Students and, to add a new student’s object, call Add() method on db.Students like db.Students.
Add(st); this will add “st” student into Students and, after saving the database, a new student will be added
to your database.

You can perform other operations like update, delete, and find using LINQ.

Listing 12-11 shows this functionality:

Code Snippet

Listing 12-11. Find, Update, and Delete using EF

//Database object

SchoolDB db = new SchoolDB();

//Find specific Studnet by ID (let say id is 2)
var std = (from p in db.Students

where p.StudentID == 2

select p).FirstOrDefault();

if (std != null)//if student is found

{
//Show the record

Console.Writeline("ID is: " + std.StudentID + " Name is: " + std.StudentName);

}

if (std != null)//if student is found

{
//update the record.

std.StudentName = "Updated Name";
db.SaveChanges();
}

334

CHAPTER 12 ' CONSUME DATA

if (std != null)//if student is found
{

//delete the record
db.Students.Remove(std);
db.SaveChanges();

These operations performed using other layers (connected and disconnected) are far easier to perform
using this layer. And the developers who haven’t much knowledge about SQL or are bothered by the
connected or disconnected layer have a better choice to interact with a database using EE

Note Every layer has its own suitability and the choice of using it depends on the scenario and efficiency.

Consume XML and JSON Data

XML and JSON are mainly used for communication over the network between different applications or
different platforms. We will discuss these two formats of passing messages/data over the Internet with a brief
description.

XML Data

XML (Extensible Markup Language)is basically designed to store and transport data. The .NET Framework
provides classes to work with XML. These classes are present in System.Xml.dll. You can read the XML
documents as well as create them along with the implication of other operations like edit and parse, and
store XML documents in memory or on disk.

We mainly use three classes to work with XML data:

1. XmlDocument: This class reads the entire XML into the memory and lets you
navigate and edit XML.

2. XmlReader: This class reads the XML element vise, reads the current element,
and moves for next. It holds the current element in memory instead of holding
the entire document or XML in memory; that’s why it is fast and less memory-
consuming.

3. XmlWriter: This class is used to create XML. It is fast way to write XML data.

Note LINQ to XML provides the flexible way to interact with XML data.

For example, we have a sample XML file and want to read this data:

<Student>

<ID>1</1D>

<Name>Hamza Ali</Name>
</Student>

335

CHAPTER 12 © CONSUME DATA

Listing 12-12 shows how to read the above XML using XmIReader:

Code Snippet

Listing 12-12. Read XML using XmlIReader

string xml = @"<Student>
<ID>1</ID>
<Name>Hamza Ali</Name>
</Student>";

//to read xml string as a stream
StringReader sReader = new StringReader(xml);

//reader needs xml data as stream (xmlReader is ready)
XmlReader xReader = XmlReader.Create(sReader);

while (xReader.Read())//Read the entire xml
{

Console.WritelLine(xReader.Value);

}

You can also use XmlDocument to read XML:

//to read xml string as a stream
StringReader sReader = new StringReader(xml);

XmlDocument doc = new XmlDocument();
doc.Load(sReader);
foreach (XmlNode item in doc.DocumentElement)

{

Console.WritelLine(item.InnerText);

}

DocumentElement gets the root element of XML. If you want to create an XML document, XmIWriter
will be used in this case. Listing 12-13 shows how you can write XML data using XmIWriter:

Code Snippet

Listing 12-13. Write XML data using XmIWriter

//Stream to store xml
StringWriter stream = new Stringhriter();
using (XmlWriter writer = XmlWriter.Create(stream, new XmlWriterSettings() { Indent = true
}))//Indent to space between elements
{
writer.WriteStartDocument();//Star Doc
writer.WriteStartElement("Student");//write Elelment "Student"
writer.WriteAttributeString("ID", "1");//Student's attribute "ID" with value 1
writer.WriteElementString("Name", "Hamza Ali"); //"Name" element inside Student
with inner text "Hamza Ali"
writer.WriteEndElement();

}

Console.WriteLine(stream.ToString());//show written xml
336

CHAPTER 12 ' CONSUME DATA

You can further store the “stream” to a file.

JSON Data

JSON is another format used to transport data over the Internet. These types of formats (XML and JSON)
are used by Web Services or Web APIs. It is lightweight and more human-readable than XML. You normally
use those classes which are used for serialization of data in JSON format. Basically, use of JSON data is the
same as JSON serialization which is discussed in Chapter 11. The .NET provides a JavaScriptSerializer class
for JSON data parsing. Additionally, we use Newtonsoft.Json library to parse JSON data. You can visit the
following link to consume JSON data using Newtonsoft.json:

http://www.newtonsoft.com/json

Working with Web Services

Web services are another way to store and retrieve data from a remote location. Data can travel through
different applications using these services.

You just need to know the address of the web service and know how to call it. Implementation behind
the calling is completely hidden from its consumers.

The .NET framework provides the facility to develop such services. You can develop this kind of service
using .NET’s technology WCF (Windows Communication Foundation) and using Visually Designed class for
creating Web Service (ASMX Service). (This feature is included in .NET Framework 3.5 and below.) This is an
old approach to create web services.

ASMX Web Service

There are two main steps to create a web service using “Visually Designed Class for web service”:
1. Creating the Web Service

2. Creating Proxy and Consuming the Web Service

Creating the Web Service
The following steps show the way to create the web service:
Step 1:

Open VS, create a new project by navigating to “Web’; then select ASP.NET Empty Web Application.
Name it whatever you like (in this example, I named it WebServiceInCSharp) and click the “OK” button
(the Framework selected should be “NET Framework 3.5”).

337

http://dx.doi.org/10.1007/978-1-4842-2860-9_11
http://www.newtonsoft.com/json

CHAPTER 12 © CONSUME DATA

Add New Project

P Recent NET Framework 3.5 = Sortby: Default
4 .
staled g:] ASP.NET Empty Web Application
4 Visual C# =
b Windows

Web
NET Core
Android
Bootstrap Bundle
Cloud
Extensibility
i0s
Reporting
Silverlight
Test
WCF
Workflow
b Visual Basic

Visual F#
b Visual C++

SOL Server

Python

~.- -

-

t Online Click here to go online and find templates.

? X
Search Installed Templates (Ctrl+E) P~
Visual C# Type: Visual G2

An empty project for creating an
application with a Web user interface

Name: WebServicelnCSharp|

Location: CUsers\Hamza Ali\Documents\Visual Studio 2015\Projects\BookSnippets

Figure 12-9. New ASPNET Empty Web Application Project

Step 2:

After the creation of the project, right-click on project » Add » New Item. Select Web Service (ASMX)
and name it whatever you like (in this example, I named it SampleService) and click the “Add” button.

338

CHAPTER 12 ' CONSUME DATA

Add New Item - WebServicelnCSharp ? X
4 Installed Sort by: Default = Search Installed Templates (Ctrl+E) 0 ~
Visual C# - . Vi =
= 'S“C’ : Ol I TypeScript JSON Configuration File Visual C# Type: Visual C=
Dtlt e - A visually designed class for creating a
ata =]
General =| TypeScript JSXFile Visual C= Web Service
4 Web ce .
General q’ WCF Service Visual C#
Markup cn
WCF Service (Ajax-enabled) Visual C#
MVC 4
Razor
Scripts Qfa Web Configuration File Visual C#
SignalR
\ Web Forms Master Page Visual C#
Web API 9
Web Forms
Bootstrap Bundle Web Forms Master Page (Nested) Visual C#
Windows Forms
WPF ‘Ja Web Forms Skin File Visual C=
3
Reporting =
Sitverlight ! Web Forms User Control Visual C2
SQL Server
Storm ltems = Web Service (ASMX) Visual C#
Worldlow
b Onii ‘l | Bower Configuration File Visual C# bk
4 niine

Click here to go online and find templates.

Mame: ;SamFIESer\.'lcq

Add Cancel _
Figure 12-10. Add ASMX Web Service

Step 3:

After adding the SampleService, SampleService.asmx will be added in your project, which is a Visually
Designed class, i.e., your web service. It looks like:

Listing 12-14. ASMX Web Service Class

namespace WebServiceInCSharp
{
[WebService(Namespace = "http://tempuri.org/")]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfilel 1)]
[System.ComponentModel.ToolboxItem(false)]
// To allow this Web Service to be called from script, using ASP.NET AJAX, uncomment the
following line.
// [System.Web.Script.Services.ScriptService]
public class SampleService : System.Web.Services.WebService

{

[WebMethod]
public string HelloWorld()

{
}

return "Hello World";

339

CHAPTER 12 © CONSUME DATA

In this class, you can add your logics and methods to expose for consumption this web service at the
client side.

Note In ASMX Web Service, Service class is implemented by the “WebService” attribute and the methods
of this class (service) are implemented by “WebMethod”. These attributes are necessary to expose the service,
otherwise the service (if the WebService attribute is missing) will not be exposed to the client; and if class is
implemented by the WebService attribute, its methods (if not implemented by the WebMethod attribute) will not
be exposed to the client. Service exposed to the client means method prototypes are exposed to the client for
use but their implementation remains hidden.

Your service is ready to use by the client side. The next steps are optional. (Follow the next steps to test
that you created service in the browser.)

Step 1:

I have also added two other functions in the SampleService.asmx file (in the SampleService class under
the HelloWorld method), like:

[WebMethod]
public int Add(int a,int b)
{
return a + b;
}
[WebMethod]
public int Subtract(int a,int b)
{
return a - b;
}

To test this service, right-click on SampleService.asmx » View in the Browser.
The list of methods written in your service are the list down in front of you. The view can give you access
to use it as a client (it basically exposes the methods of the Web service).

2 C {0 @ localhost:537

SampleService

The following operations are supported. For a formal definition, please review the Service Description.
« Add
+ Helloworld

+ Subtract

Figure 12-11. List of Methods exposed by Service

Step 2:
Click on any of one to test the method. (Click on Add.)
340

CHAPTER 12 ' CONSUME DATA

- C)} | ® localhost:53702/SampleService.asmx?op=Add

SampleService

Click here for a complete list of operations.

Add
Test

To test the operation using the HTTP POST protocol, click the 'Invoke’ button.
Parameter Value

a: 10

b: 15

Invoke

Figure 12-12. Invoking Add Method of Service

As you can see from your code, add() methods take two parameters with the names a and b and return
aresult. The same happens here.

Step 3:

After involving the method, the result would be viewed in the form of XML as described XML and JSON
used to transport data over the network and mainly used by a Web Service or Web APIs.

C O | ® localhost:53702/SampleService.asmx/Add

This XML file does not appear to have any style information ass

<int xmlns="http://tempuri.org/">25</int>

Figure 12-13. Respose of Add method in XML format

These are the steps for creating and testing a created web service.

341

CHAPTER 12 © CONSUME DATA

Create Proxy and Consume the service

Creation of Proxy is important, as it registers with the client application and allows web services’ methods to
be used as local methods at the client side.
For this you must follow the following steps:

Step 1:

Create another project (C# Console Project) in your solution and name it whatever you like. Right-click
on References » Add Service Reference. Click on the “Discover” button, as it will fetch web services in your
solution. You can give any address (external) for the web service you want to consume.

Add Service Reference ? *

To see a list of available services on a specific server, enter a service URL and click Go. To browse for available
services, click Discover.

Address:

.http:,’fiocalhost:53?02!Samp1e5ervice‘asmx v|| 6o Discover |~

Services: Operations:

b @ @' SampleService.asmx

Select a service contract to view its operations.

1 service(s) found in the solution.

Namespace:
[MySen.riceI

Advanced... Cancel

Figure 12-14. Add Service Reference to Client Project

You can change the namespace for your discovered web service. (I named it MyService, which it will use
later in the code.)

Step 2:

After clicking the “OK” button, a folder of Service References is added with necessary DLLs. Now in your
code file (Program file), simply write the following code snippet:
Listing 12-15. Creation of Proxy to consume Web Service

//Create the proxy for your service to use its methods
MyService.SampleServiceSoapClient proxy = new MyService.SampleServiceSoapClient();

342

CHAPTER 12 ' CONSUME DATA

int addResult = proxy.Add(5, 10);
int subtractResult = proxy.Subtract(100, 40);

Console.WritelLine("Addition Result is: " + addResult);
Console.WritelLine("Subtraction Result is: " + subtractResult);

MyService is the Namespace which you added while adding SampleService in this project. You can
create a proxy with the written class (above in code).

When there is a change in Service, you just need to update your added reference to that service. This is
done by just expanding the folder “Service Reference” in Client project. Right-click on your service and click
“Update Service Reference”.

Note The class of your service is SampleService but, at the time of creating a proxy, you have to write
SoapClient (suffix) with the class name as SampleServiceSoapClient. If the service class name is MyService the
proxy class will be MyServiceSoapClient.

WCF Web Service

According to MSDN:

Windows Communication Foundation (WCF) is a framework for building service-
oriented applications. Using WCE you can send data as asynchronous messages from one
service endpoint to another. A service endpoint can be part of a continuously available
service hosted by IIS, or it can be a service hosted in an application.

Modern web services are being created using WCE. You can follow the simple WCF getting started
directions from the following link:

https://msdn.microsoft.com/en-us/library/ms734712(v=vs.110).aspx

Note In WCF Web Service, Service class is implemented by the ServiceContract attribute (like WebService
in ASMX) and its methods are implemented by the OperationContract (like WebMethod in ASMX).

WCF web service vs. ASMX Web Service

Table 1-1. WCF vs. ASMX Web Service

WCF Service ASMX Service

1. WCEF service can be hosted in IIS, WAS, Console, 1. ASMXservice can just be hosted in IIS.
WCEF Provided Host

2. It supports multiple communication protocolsi.e., 2. Itsupports only HTTP.

HTTP, TCP, MSMQ, and NamedPipes.

3. TItuses DataContractSerializer. 3. Ituses XmlSerializer.

343

https://msdn.microsoft.com/en-us/library/ms734712(v=vs.110).aspx

CHAPTER 12 © CONSUME DATA

Summary

1. ADO.NET is a set of object-oriented libraries used to interact with a database.

2. Inaconnected layer, you connect to a database as a data source and execute
queries by writing SQL. These queries are used by ADO.NET and forwarded to
your database of choice.

3. Inadisconnected layer, you normally use DataSets and DataTables that copy
the structure of a relational database in memory. A DataSet is created as the
result of an execution of query against a connected database.

4. Entity Framework is an object relational mapping framework for ADO.NET

5. Web service is imaginary software available on the Internet used by the client to
expose its service in a standardized XML or JSON messaging system.

6. ASMXweb service is a Visually Designed class (Service) that is available to
create at .NET framework 3.5

7. WCF web service is the evolution of ASMX web service, and modern services are
being developed using a .NET Framework through WCE

Code Challenges
Challenge 1: Create ASMX Web Service

Create a database of School with one table, Student having required fields (StudentID as primary key and
StudentName). Create a Web Service named SchoolService and include ADO.NET for databse interactivity.
The service should include two methods to add and read all students (students should be returned to client
in JSON format). Create a console project (Client) which exposes this service and consumes the written
methods in service.

[Hint] Create an Asp.NET Empty Web Project with the name SchoolService and then add an ASMX
web service named SchoolWebService. Write the Add() method for add student and the ReadAll() method
for read all students. Add an ADO.NET component into this project to connect the service with a database.
Make another class (Serializable) so that data can be sent in serialized form. Without making data
serializable, it does not send back to the client.

Practice Exam Questions

Question 1
You want to retrieve data from Microsoft Access 2013, which should be read-only. Which class you should use?
A) SqglDataAdapter
B) DbDataAdapter
C) OleDbDataReader
D) SqlDataReader

344

CHAPTER 12 ' CONSUME DATA

Question 2

Suppose you created the ASMX Web Service named SampleService. Which class you would use to create the
proxy for this service?

A) SampleServiceSoapClient
B) SampleService
C) SampleServiceClient

D) SampleServiceSoapProxy

Question 3

Choose the correct code snippet/snippets for insert query (insert code snippet of C#, syntax vise):

A) SqlConnection con=new SqlConnection(“ConectionString”);
SqlCommand cmd=new SqlCommand(insertQuery,con);
Con.open();

Cmd.ExecuteNonQuery();
Con.close();

B) Using(SqlConnection con=new SqlConnection(“ConectionString”))

SqlCommand cmd=new SqlCommand(insertQuery,con);
Cmd. ExecuteNonQuery();
}

C) SqlConnection con=new SqlConnection(“ConectionString”);
Using(SqlCommand cmd=new SqlCommand(insertQuery,con))

Con.open();
Cmd . ExecuteNonQuery();

}
D) Using(SqlConnection con=new SqlConnection(“ConectionString”))
SqlCommand cmd=new SqlCommand(insertQuery,con);

Con.Open();
Cmd.ExecuteNonQuery();

}
Answers
1. C
2. A
3. AD

345

CHAPTER 13

Working with Cryptography

Security is an important part to cover when developing your application. You need to take care about data
privacy, user authenticity, data travel security and that data is not be compromised.

The .NET Framework gives you a powerful way to secure your sensitive data. It gives several algorithms
which you can use in development of your application. In this chapter, we will cover the following topics:

1. Cryptography and Cryptanalysis
Encryption and Decryption

Symmetric and Asymmetric Encryption
Digital Certificates

Key Management

Code Access Security

Hashing

© N o e =~ 0 Dbd

Securing String Data

Cryptography

The word Cryptography is formed from two words: “crypto” means encrypted or hidden and “graphy”
means designing or writing or the representation of something.

Cryptography deals with the study of secret communication. It is the technique to hide data or
messages into a hidden or unreadable form.

Cryptography is mainly used to send data from an insecure channel so that data can reach its
destination successfully. It is performed by doing Encryption on data.

Encryption

Encrypt is also formed from two words: “en” means to make and “crypt” means secret or unreadable
or hidden. Therefore, encrypt means to make hidden or to make unreadable, and the process of making
unreadable is called Encryption.

It is the process of transforming a plain text into an unreadable form of cipher text by performing some
algorithms on it.

In ancient times, to do secure communication or send messages via an insecure channel to receivers,
cryptography was used. This is done by sending a messenger with an encoded (Encrypted) message from the
sender to the receiver. The receiver knew the pattern and performed the decoding called Cryptanalysis to decode
(Decrypt) the message according to a pattern or rules set between the two parties for secret communication.

© Ali Asad and Hamza Ali 2017 347
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_13

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

The set of rules or algorithm used for encryption is known to the receiver and the sender. This set of
rules or algorithm should be kept secret from others or you can use a public way to send your message
using a key (same like a password) which should be kept secret. The key for your algorithm controls the
encryption process.

Info Plain Text is a message or data that is human-readable and cipher text is such a text which is
encrypted (meaningless, unreadable).

Cryptanalysis

Decrypt is also formed from two words: “de” means remove or opposite or transform and “crypt” means
hidden or unreadable, so decrypt means transform a hidden or unreadable message, and the process of
transforming cipher text into plain text is called Decryption.

Pictorial Representation

A pictorial representation of the general encryption and decryption process is as follows:

Sender Receiver

Hello World Hello World
Encrption Decryption
¥ |

X1~/ BAJKF*A(&*)AD34 Lo ication Channelg‘ X1~/ BAJKF*A(&*JAD34

Figure 13-1. Representation of Encryption and Decryption Process

Info Cryptography is the art or study of encryption and decryption.

348

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Types of Encryption

There are two types of encryption which have their own suitability for use according to two scenarios. These are:
1. Symmetric Encryption

2. Asymmetric Encryption

Symmetric Encryption

Symmetric encryption is the encryption in which you send the key along with the data so that the user can
decrypt the data with the same key. It is also called shared secret encryption.

Data is secure due to symmetric encryption but it should travel to an authorized person as a key also
travels with the data. Once the data goes to an unauthorized person, data becomes compromised as the
receiver could decrypt data with the received key.

The algorithm for symmetric encryption works in the following way: the data to be encrypted is
transformed into blocks of cipher and each block has a specific size to contain ciphered data. This is called
cipher block chaining. When the data is bigger than the size of the block (block size), data is split into
multiple blocks. The block size depends on the algorithm used.

The first block contains encrypted value of some random value called Initialization Vector (IV) and
encryption key, the next block contains encrypted value of previous block with key and so on. If the size
of last block is less than the data resides on it, the block gets padded. Symmetric algorithm is fast than
asymmetric encryption and suitable for large amount of data.

The .NET Framework gives five different symmetric algorithms to work with.

Table 13-1. Symmetric Algorithms

Algorithm Description

AES AES (Advanced Encryption Standard) is a symmetric algorithm. It was designed for both
software and hardware. It has support for 128-bit data and 128,192,256-bit key.

DES DES (Data Encryption Standard) is a symmetric algorithm published by National Institute
of Standard and Technology (NIST).

RC2 RC2 (Ron’s Code or Rivest Cipher) also known as ARC2 is a symmetric algorithm designed
by Ron Rivest.

Rijndael Rijndael is symmetric algorithm chosen by NSA as a Advanced Encryption Standard (AES).

TripleDes TripleDes also known as 3DES (Triple Data Encryption Standard) applies DES algorithm

three times to each data block.

These symmetric algorithm are defined in .NET and can be found their classes in System.Security.

Cryptography.
For example, we have a secret data: “Secret Message’, and want to encrypt it. You can use any of the
above algorithms (classes). Listing 13-1 shows how you can perform symmetric encryption.

Code Snippet
Listing 13-1. symmetic encryption

//specify the data
string plainData = "Secret Message";

349

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

//convert into bytes of array
byte[] plainDataInBytes = Encoding.UTF8.GetBytes(plainData);

//Create a default cryptography object used to perform symmetric encryption
SymmetricAlgorithm symmetricAlgo = SymmetricAlgorithm.Create();

//Create encryptor with key and IV (Optional)
ICryptoTransform encryptor = symmetricAlgo.CreateEncryptor(symmetricAlgo.Key,

symmetricAlgo.IV);

byte[] cipherDataInBytes = encryptor.TransformFinalBlock(plainDataInBytes, 0,
plainDataInBytes.Length);

//get the bytes of encrypted data into string
string cipherData = Encoding.UTF8.GetString(cipherDataInBytes);

Console.WriteLine("Encrypted Data is: "+ cipherData);

Info The algorithm and key used for encryption should be same while decrypting.

Data must be in bytes as System.Security.Cryptography works on bytes of data to encrypt.

SymmetricAlgorithm class is an abstract class of symmetric algorithms (Aes, DES, etc.). You can use
its Create method to create the default object for cryptography. By default, it uses a RijndaelManaged
algorithm (a managed version of Rijndael algorithm). You can give the name of any symmetric algorithm in
Create method or can create the instance of them.

After specifying the algorithm, you specify the key and IV (which are optional) and create encryptor.
TransformFinalBlock used to transform data in bytes to cipher text.

Info Whenever the encryption performs, cipher text changes.

Listing 13-2 shows how to decrypt data.

Code Snippet

Listing 13-2. Symmetric Decryption

//Create a default cryptography object used to perform symmetric encryption
SymmetricAlgorithm symmetricAlgo = SymmetricAlgorithm.Create();

ICryptoTransform decryptor = symmetricAlgo.CreateDecryptor(symmetricAlgo.Key,
symmetricAlgo.IV);

byte[] plainDataInBytes = decryptor.TransformFinalBlock(cipherDataInBytes, 0,
cipherDataInBytes.Length);

string plainData= Encoding.UTF8.GetString(plainDataInBytes);

Console.Writeline("Decrypted Data is: " + plainData);

To decrypt data, create decryptor and call the same function on cipher text (TransformFinalBlock).

350

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

The output would be look like:

Encrypted Data is: 20917944468192702566763722515215199184
Decrypted Data is: Secret Message

Figure 13-2. Output

Asymmetric Encryption

Asymmetric encryption uses a pair of two keys instead of one for encryption. These two keys are
mathematically related to each other. One of the keys is called Public key and other one is called Private
key. You use one of the keys to encrypt data and other to decrypt data. The other key should be from the
pair of keys you generated. The encryption you do with these keys is interchangeable. For example, if keyl
encrypts the data then key2 can decrypt it and if key2 encrypt the data then keyl can decrypt it, because one
of them can be given to everyone and the other one should be kept secret.

The data gets encrypted with the receiver’s public key and can only be decrypted by the private key
from the specific receiver because only that user should have access to the private key.

The public key transmits along the data while the secret key kept with the recipient.

Asymmetric encryption avoids sharing the encryption key; that’s why it is more secure than a symmetric
key. But, on the other hand, it is slower than symmetric encryption.

The .NET Framework provides several Asymmetric algorithms to work with.

Table 13-2. Asymmetric Algorithms

Algorithm Description

RSA RSA is an asymmetric algorithm commonly used by modern computers.

DSA DSA (Digital Signature Algorithm), produced by NIST, is a standard to create digital
signatures for data integrity.

ECDsa ECDsa (Elliptic Curve Digital Signature) offers variant of the DSA.

ECDiffieHellman Provides a basic set of operations that ECDH implementations must support.

These Asymmetric algorithms are defined in .NET and their classes can be found in System.Security.
Cryptography.

Take the above used example in symmetric encryption and perform any of the asymmetric algorithm
provided for encryption to show how it works.

Listing 13-3 shows how to generate keys used for DSA asymmetric encryption.

Code Snippet

Listing 13-3. DSA asymmetric enryption

//Creation of asymmetric algo object
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();

//saving the key information to RSAParameters structure
RSAParameters RSAKeyInfo = rsa.ExportParameters(false);

351

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

//generating both keys(public and private)
string publicKey = rsa.ToXmlString(false);
string privateKey = rsa.ToXmlString(true);

ToXmlString method returns the public or private key based on the Boolean value. To generate a
private key make the value true, and for a public key the value shall be false.

Now we have two interlinked keys of an asymmetric algorithm. If A wants to send data to B then both
parties should have an understanding about the pattern or keys used for communication between them.

The recipient (B) should have the private key for decryption and the sender (A) will encrypt data using
the public key. The data that traveled to B will only be decrypted with the secret key which generated along
with the public key (used for encryption).

Listing 13-4 shows how to encrypt data with the available or obtained public key and decrypt with the
private key.

Code Snippet

Listing 13-4. encrypt and decrypt data with public key, private key

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
//Encrypting Code (On Sender side)

//data to encrypt

string data = "Secret Message";

//convert into bytes

byte[] dataInBytes = Encoding.UTF8.GetBytes(data);

//Specify the public key obtained from receiver
rsa.FromXmlString(publicKey);

//Use Encrypt method for encryption
byte[] encryptedDataInBytes = rsa.Encrypt(datalnBytes, true);

//get the bytes of encrypted data into string
string encryptedData = Encoding.UTF8.GetString(encryptedDatalnBytes);

Console.WriteLine("\nEncrypted Data is: "+ encryptedData);
//Decrpyting Code (on receiver side)

//Specify the private key
rsa.FromXmlString(privateKey);

//Use Decrypt method for encryption
byte[] decryptedDataInBytes= rsa.Decrypt(encryptedDataInBytes, true);

//get the bytes of decrypted data into string
string decryptedData = Encoding.UTF8.GetString(decryptedDatalnBytes);

Console.WriteLine("Decrypted Data is: "+ decryptedData);

You can use a private key (instead of public) for encryption and public for decryption. One could be
known to all and the other must be secret.

352

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Info Combining a symmetric and an asymmetric algorithm can be more secure and help you to transmit a
larger amount of data.

Implement Key management

The management of Keys used for encryption is an important part of cryptography process. In a Symmetric
algorithm, a key and an IV are required to generate. The key must be secret and only known to the receiver so
that others can not decrypt data. Asymmetric requires the creation of two keys where one should be public
and the other must be private.

Symmetric Keys

In a symmetric algorithm, keys must be private, whereas there is no compulsion for an IV. Listing 13-5 shows
how to create a symmetric key and an IV.

Code Snippet

Listing 13-5. Creation of symmetric key and IV

SymmetricAlgorithm symmetric = SymmetricAlgorithm.Create();
symmetric.GenerateIV();
symmetric.GenerateKey();

Asymmetric Keys

When the instance of an asymmetric algorithm created, a key pair of public and private key generated.
ToXmlString method returns a key in XML form and ExportParameters returns RSAParameters that hold
information of key.

The private key should be stored securely so that no unauthorized person can steal it. For this purpose,
you should use a key container to manage the private key.

Listing 13-6 shows how to store a private key in a key container.

Code Snippet

Listing 13-6. store private key in key container

//Creating the container

CspParameters parameter = new CspParameters();
parameter.KeyContainerName = "KeyContainer";

//Creation of asymmetric algo object
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(parameter);

//saving the key information to RSAParameters structure
RSAParameters RSAKeyInfo = rsa.ExportParameters(false);

string privateKey = rsa.ToXmlString(true);

Console.WriteLine("Key is stored in Container"+ privateKey);

353

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Listing 13-7 shows how to delete key from key container.

Code Snippet

Listing 13-7. delete key from key container

//Creating the container

CspParameters parameter = new CspParameters();
parameter.KeyContainerName = SET THE NAME OF THAT KEY CONTAINER USED TO STORE KEY;

//Creation of asymmetric algo object
RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(parameter);

//saving the key information to RSAParameters structure
RSAParameters RSAKeyInfo = rsa.ExportParameters(false);

rsa.PersistKeyInCsp = false;
rsa.Clear();

Console.WriteLine("Key is Deleted");

You can also read the key from the container.

Encrypt Stream

Streams are covered in Chapter 10. Encrypting the data that goes through streams for privacy and integrity is
also important.

C# provides a class, CryptoStream, for the encryption of data that travels through streams.

Listing 13-8 shows how you can encrypt data.

Code Snippet

Listing 13-8. encrypt stream

string message = "SECRET MESSAGE";

SymmetricAlgorithm symmetric = SymmetricAlgorithm.Create();

ICryptoTransform encryptor = symmetric.CreateEncryptor(symmetric.Key, symmetric.IV);
MemoryStream memoryStream = new MemoryStream();

//cxptoStream know encrptor and stream in which data to written

CryptoStream crptoStream = new CryptoStream(memoryStream, encryptor, CryptoStreamMode.

Write);

//writer has reference of cryptoStream (what to encrypt and where)
using (StreamWriter streamWriter = new StreamWriter(crptoStream))

//write the ecrypted message into memeory stream
streamWriter.Write(message);

}
354

http://dx.doi.org/10.1007/978-1-4842-2860-9_10

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

//close cryptoStream
crptoStream.Close();
//Close memoryStream
memoryStream.Close();

Listing 13-9 shows how to decrypt data.

Code Snippet

Listing 13-9. decrypt stream

ICryptoTransform decryptor = symmetric.CreateDecryptor(symmetric.Key, symmetric.IV);
MemoryStream memoryStream = new MemoryStream(CIPER _TEXT HERE);

CryptoStream cryptoStream = new CryptoStream(memoryStream, decryptor, CryptoStreamMode.
Read);

using (StreamReader streamReader = new StreamReader(cryptoStream))

{

string decryptedData = streamReader.ReadToEnd();
}

Working with ProtectedData Class

Without worrying about using the encryption algorithm (i.e., symmetric or asymmetric), you can still protect
your data by using the ProtectedData class.
In a .NET framework, a ProtectedData class contains two static methods:

1. Protect()
2. Unprotect() to decrypt the data

The ProtectedData class is a part of the System.Security.Cryptography namespace; to add the
namespace in a project you must add the System.Security assembly in the references folder.

Protect()

Protect method is the static method of ProtectedData class; it is used to encrypt the data. It contains the
following method signature:

public static byte[] Protect(byte[] userData,byte[] optionalEntropy,
DataProtectionScope scope)

e userData: An array of bytes that contains data to be encrypted.

e optionalEntropy: Is an optional byte array that is used to increase the complexity of
the encryption, or null for no additional complexity.

e scope: It takes the value of the DataProtectionScope enumeration that specifies the
scope of encryption.

355

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Code Snippet

Listing 13-10. encrypt by Protect method
string message = "Hello World";

//Convert data into a byte array
byte[] userData = Encoding.UTF8.GetBytes(message);

//encrypt the data by using ProtectedData.Protect method
byte[] encryptedDataInBytes = ProtectedData.Protect(userData, null, DataProtectionScope.
CurrentUser);

string encryptedData = Encoding.UTF8.GetString(encryptedDatalnBytes);

Console.WriteLine("Encrypted Data is: " + encryptedData);

Explanation

The string data convert into a byte array and then the Protect method encrypts it, while
DataProtectionScope.CurrentUser specifies only the current user can decrypt the encrypted data.
DataProtectionScope is enumeration. CurrentUser means only the current user can encrypt the data and
LocalMachine means all the users of a local machine can encrypt data.

Unprotect

Unprotect method is the the static method of the ProtectedData class; it is used to decrypt the encrypted
data. It contains the following method signature:

public static byte[] Unprotect(byte[] userData,byte[] optionalEntropy,
DataProtectionScope scope)

e userData: An array of bytes that contains data to be encrypted.

e optionalEntropy: Is an optional byte array that is used to increase the complexity of
the encryption, or null for no additional complexity.

e scope: It takes the value of DataProtectionScope enumeration that specifies the
scope of encryption.

The method signature of both Protect and Unprotect methods are the same.

Code Snippet

Listing 13-11. decrypt by UnProtect method

byte[] decryptedDataInBytes = ProtectedData.Unprotect(encryptedDataInBytes, null,
DataProtectionScope.CurrentUser);

string decryptedData = Encoding.UTF8.GetString(decryptedDatalInBytes);

Console.WriteLine("Decrypted Data is: " + decryptedData);

356

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Explanation

The encrypted data is decrypted by using the Unprotect method; it takes data that is encrypted (i.e.,
encryptedDatalnBytes) and then decrypts it.

Manage and Create Digital Certificates

A digital certification uses hashing and asymmetric encryption to authenticate the identity of the owner (signed
object) to others. An owner of the certificate contains both public and private keys. The public key is used to
encrypt the sent message while the private key is used to decrypt it; only the owner of the certificate has access
to the private key to decrypt the encrypted message. This way, digital certificates enable the integrity of data.

A digital certificate is part of a public key infrastructure (PKI). A public key infrastructure is a system of
digital certificates, certificate authorities, and other registration authorities to verify and authenticate the
validity of each involved party.

Create and Install Certificate

Certificate Authority (CA) is a third-party tool that is used to issue a certificate. Each certificate contains a
public key and the data, such as, a subject to which the certificate is issued, a validity date for how long the
certificate will remain validated, and the information about the issuer who issued the certificate.

We'll use a tool, Makecert.exe, that will help us to create an X.509 digital certificate, which is commonly
used to authenticate clients and servers, encrypt, and digitally sign messages.

Follow the following steps to create a digital certificate:

1. Run Command Prompt as Administrator.

2. To create a digital certificate, enter the following command: makecert
{Certificate_Name}.cer

3. makecert myCert.cer

The above command will create a certificate file of name “myCert.cer”. To use the generated certificate
file, you must install it in your machine to be able to use it. Certificate Store is a place where you stored the
certificate after installation.

Follow the following steps to create and install a certificate.

1. Run Command Prompt as Administrator.

2. To create a digital certificate, enter the following command: makecert
{Certificate_Name}.cer

makecert -n "CN=myCert" -sr currentuser -ss myCertStore

The above command will create and install a certificate file.

Working with System.Security Namespace

The System.Security namespace contains the fundamental building blocks of a .NET code access security
framework. Child namespace System.Security.Permissions provides Code Access Security (CAS), which
protects your computer from malicious code.

357

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Code Access Security (CAS)

The CLR in .NET Framework enforces security restrictions to use third party resources. You must ask for
permission to access and manipulate the protected resources of third party tools.
There are two ways to specify CAS in C# code:

1. Declarative

2. Imperative

Declarative
In a declarative way, we use attributes to apply security information.

Code Snippet

Listing 13-12. Declarative CAS

[FileIOPermission(SecurityAction.Demand,
AllLocalFiles = FileIOPermissionAccess.Read)]
public void MyDeclarativeCAS()

{

// Method body
}
Imperative

In an imperative way, we explicitly ask for the permission in the code.

Code Snippet

Listing 13-13. Imperative CAS

FileIOPermission fp = new FileIOPermission(PermissionState.None);
fp.AllLocalFiles = FileIOPermissionAccess.Read;
fp.Demand();

FIleIOPermissionAccess.Read will explicitly allow the read-only file access.

Hashing

Hashing (performing hashing algorithms) is the process of converting data into short and fixed length
unreadable form. This process is irreversible, i.e., you cannot convert hashed data back to the original one.
Every time you generate hash for specific data, it will be the same output (hashed form). It is used to check
the integrity of data, string comparison, Data authenticity and, most importantly for security, password
storage. Unlike encryption, Hashing is a one-way process.

C# provides several algorithms of hashing to work with. Table 13-3 shows the hash algorithms provided
in System.Security.Cryptography.

358

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Table 13-3. Hashing Algorithms

Algorithm Description

SHA1 SHA1 is a cryptography hash function, resulting in a 160-bit hash value.

SHA256 SHAZ256 is a cryptography hash function, resulting in a 256-bit hash value.

SHA512 SHA512 is a cryptography hash function, resulting in a 512-bit hash value.

SHA384 SHA384 is a cryptography hash function, resulting in a 384-bit hash value.
RIPEMD160 RIPEMD (RACE Integrity Primitives Evaluation Message Digest) 160 is a cryptography

hash function, similar in performance to SHAI.

These algorithms (classes) are defined in .NET and can be used to perform hashing. You can use any of
the above hashing algorithms. We use SHA256 in the example to understand how it is performed.

For example, you have a password and want to store it in your database so that if anyone ever stole the
database, the hacker would not know the password as it would be in unreadable form.

Listing 13-14 shows how to perform hashing.

Code Snippet

Listing 13-14. Hashing

//password to be hashed
string password = "HelloWorld";

//password in bytes
var passwordInBytes = Encoding.UTF8.GetBytes(password);

//Create the SHA512 object
HashAlgorithm sha512 = SHA512.Create();

//generate the hash
byte[] hashInBytes = sha512.ComputeHash(passwordInBytes);

var hashedData = new StringBuilder();
foreach (var item in hashInBytes)

hashedData.Append(item);
}

Console.WriteLine("Hashed Password is: " + hashedData.ToString());

You can save a hashed password into a database or compare a logged-in user by converting the
password into hashed form and comparing its hash with an already stored hashed value of that specific user.

There is a problem in this process. Every time a request is being sent or a user logs in, the same hash is
generated. So the hacker can track down the traffic through a communication channel and the hacker gets
to know that each time the data is traveled, the password/message/hashed value is the same. Therefore, the
hacker can send the same value without knowing what it is and can successfully enter in your system, which
is a security breach.

To avoid such a problem, salt hashing comes in handy.

359

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

Salt Hashing

Salt is non-repetitive random data that is added with the hashed value to make it unique every time it is
generated.
Listing 13-15 shows how to perform salt hashing.

Code snippet

Listing 13-15. Salt Hashing

//password to be hashed
string password = "HelloWorld";

//generate Salt (GUID is globally unige identifer)
Guid salt = Guid.NewGuid();

//Merge password with random value
string saltedPassword = password + salt;

//password in bytes
var passwordInBytes = Encoding.UTF8.GetBytes(password + salt);

//Create the SHA512 object
HashAlgorithm sha512 = SHA512.Create();

//generate the hash
byte[] hashInBytes = sha512.ComputeHash(passwordInBytes);

var hashedData = new StringBuilder();
foreach (var item in hashInBytes)
{

hashedData.Append(item);

}

Console.WriteLine("Unique hashed Password is: " + hashedData.ToString());

NewGuid method created a global unique identifier, i.e., it changed a value concatenation with a
password to generate a different hash every time the code runs; hence, salt hashing protects you from a
security attack by hackers.

C# provides GetHashCode() method on every instance to generate its hash code, which is normally
used for a string or value comparison .

Tip Use GetHashCode() method for comparing values instead of comparing values itself.

Choosing an appropriate Algorithm

When you have multiple algorithms for performing encryption or hashing, then it is important to choose the
best algorithm with respect to the scenario. The following points illustrate the usage of different commonly
used algorithms with respect to the scenario.

360

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

1. When there is a scenario to deal with more sensitive data, you should use
Asymmetric encryption instead of symmetric encryption.

2. When there is a scenario for data privacy, use Aes (Symmetric algorithm).

3. When there is a scenario for Data Integrity, use HMACSHA256 and
HMACSHA512 hashing algorithms.

4. When there is a scenario for digital signing (Digital Signature), use ECDsa and RSA.

5. When there is a scenario to generate a random number, use
RNGCryptoServiceProvider.

Info You can read more about this topic from the following link:

https://msdn.microsoft.com/en-us/library/0ss79b2x(v=vs.110).aspx

Working with SecureString Class

When working with secure strings (data) such as passwords or credit card numbers (which are commonly
in string formats), we normally use string class or type to store or work with them. This is inappropriate
because string stores your data in plain text, so your sensitive data is open for attack. String class is

also immutable, which leaves copies in memory on every change which could be compromised as it is
impossible for a garbage collector to clear all the copies of data.

In such a situation, C# provides SecureString class to work with your sensitive strings. It can be found in the
System.Security namespace. It makes your string more secure. SecureString automatically encrypts the string
and stores it in a special memory location. It is mutable and implemented by IDisposable; that's why there is not
a problem of multiple copies of data and the impossibility of a garbage collector to clear all copies. Whenever you
are done working with SecureString, you can make sure its content is removed from memory, using IDisposable.

SecureString does not properly secure the data but minimizes the risk for data to be compromised.

It takes string character by character, not the whole string at all. When necessary, you can make the string
encrypted by SecureString as just read-only.

Listing 13-16 shows how you can secure the string using SecureString class.

Code Snippet

Listing 13-16. SecureString class to secure sensitive data

SecureString secureString = new SecureString();

Console.Write("Please enter your Credit Card Number: ");
while (true)
{
ConsoleKeyInfo enteredKey = Console.ReadKey(true);
if (enteredKey.Key == ConsoleKey.Enter)
break;
secureString.AppendChar(enteredKey.KeyChar);
Console.Write("#");
}
secureString.MakeReadOnly();

//When done with SecureString, Dispose the content so that it does not remain in memory
secureString.Dispose();

361

https://msdn.microsoft.com/en-us/library/0ss79b2x(v=vs.110).aspx

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

You can also read the encrypted string (by SecureString) using the special class Marshal, which can be
found in System.Runtime.InteropServices. Reading the encrypted string makes the string decrypted and
returns it as a normal string (plain text) so you must clear the normal string from memory after reading; even
these would be an exception. So encapulate reading code with try/catch/finally block.

Listing 13-17 shows how you can read the string as plain text.

Code Snippet

Listing 13-17. Read the data protected by SecureString
IntPtr plainTextAsIntPtr = IntPtr.Zero;

try

{
//Decrypt string (as a IntPtr)
plainTextAsIntPtr = Marshal.SecureStringToGlobalAllocUnicode(secureString);
Marshal.PtrToStringUni(plainTextAsIntPtr);

}

catch (Exception ex)

Console.WriteLine(ex.Message);

}

finally

{
//This method ClLeared dycrypted string from memory
Marshal.ZeroFreeGlobalAllocUnicode(plainTextAsIntPtr);
Console.WriteLine("Memory Cleared.");

}

The Marshal class gives a method for decrypting string along with a method to clear the content of
decrypted string from memory.

SecureStringToGlobalAllocUnicode() method is static and is used to read the secure string and return
the address of a memory location which contains the value as IntPtr (pointer). That pointer contains the
address of the memory location, and is converted to a string (value) that the pointer contains (points to).

ZeroFreeGlobalAllocUnicode() method is also static and is used along with
SecureStringToGlobalAllocUnicode() method to free the content of the decrypted string from memory.
Marshal class also provides other methods for reading the secure string along with their respective
methods for disposing the decrypted content from memory. You can find out about them and more about
SecureString from the following link:

https://msdn.microsoft.com/en-us/library/system.security.securestring(v=vs.110).aspx

Summary

1. Encryption is the process of converting plain text into cipher text.
Decryption is the process of converting cipher text into plain text.

Symmetric Encryption uses one key to encrypt and decrypt data.

Eal

Asymmetric Encryption uses two mathematically linked keys: public and private.
One of them is used to encrypt the data and other is used to decrypt the data.

362

https://msdn.microsoft.com/en-us/library/system.security.securestring(v=vs.110).aspx

CHAPTER 13 WORKING WITH CRYPTOGRAPHY

5. Digital Certificates are used for the authenticity of an author.

6. Hashingis the process of converting data into long unreadable form and it
cannot be converted back.

Code Challenges

Challenge 1: Develop a simple window form application and perform
Salt hashing

Create a simple database table of login to store username, hashed password, and GUID value (salt value).
Use the Connected Layer approach to interact with the database. Make two forms: Registration and Login.
Register the user (password should be inserted in hashed form) and then log in the user successfully.

Practice Exam Questions

Question 1
The application needs to encrypt highly sensitive data. Which algorithm should you use?
A) DES
B) Aes
C) TripleDES
D) RC2

Question 2

You are developing an application which transmits a large amount of data. You need to ensure the data
integrity. Which algorithm should you use?

A) RSA
B) HMACSHA256
C) Aes

D) RNGCryptoServiceProvider

Question 3

Salt Hashing is done by:
A) Merging data with random value and perform cryptography.
B) Merging data with random value and perform cryptanalysis.
C) Merging data with random value and perform encryption.

D) Merging data with random value and perform hashing.

363

CHAPTER 13 * WORKING WITH CRYPTOGRAPHY

Answers
1. B
2. B
3. D

364

CHAPTER 14

Assembly and Reflection

Assembly is an important part in any .NET application development, while reflection is used to read all the
information of an assembly at runtime. In this chapter, we'll learn:

1. Assembly

2. Creation and Use an Assembly

3. Installing an Assembly in a Global Assembly Cache
4, Reflection in C#

5. Creating and Using Custom Attributes

Introduction to Assemblies

An assembly is the output of the compiled code. It’s a physical code that is used to deploy an application. In
a .NET, assembly it is typically a Dynamic Link Library (DLL) or an Executable (EXE) file.

When Code is Compiled

When code is compiled, a compiler converts the source code into Microsoft Intermediate Language
(MSIL) code; it is a CPU-independent code. The Common Language Runtime (CLR) uses Just In Time (JIT)
compiler to convert MSIL code into a native code to the operating system. This MSIL code is available in a
portable executable (PE) file, which helps in executing an assembly.

When a compiler converts the source code into MSIL code it also creates its metadata. Metadata
stores information about the data stored in an assembly. For example, it contains information of the types
available in that assembly, their containing namespaces, base class of each available type, the interfaces it
implemented, its methods and their scope, each method’s parameters, each type’s properties, and so on. In
other words metadata is the encrypted documentation of a source code.

When a code is compiled successfully, an assembly manifest file is generated. It's an XML file which
contains information about assembly, like its name, version number, and an optional strong name that
uniquely identifies the assembly. It also contains the names of other reference assemblies used in the code.

Types of Assembly

Assembly is typically divided into two types:
1. Private Assembly
2. Public Assembly

© Ali Asad and Hamza Ali 2017 365
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_14

CHAPTER 14 © ASSEMBLY AND REFLECTION

Private Assembly

A private assembly (.dll or .exe) can be used by only a single application. Generally private assembly is found
in the application root folder.

If another application tries to refer a private assembly, it must used store a copy of that private assembly
in its root directory, otherwise the application won't be able to deploy succussfully.

Public/Shared Aseembly

A public assembly (.dll or .exe) can be used by multiple applications at a time. It is also known as a shared
assembly, which is stored in Global Assembly Cache (GAC). This shared assembly also known as a strong
name assembly.

Generally, when an application is deploying, it doesn't need a public assembly to be referenced in the
root folder of the application.

Uses of Assembly
Assembly has many uses; some of the important uses of assembly are given below:

1. Assembly allows component-based development, which means multiple
assemblies can reuse each other’s types, methods, and classes to build a software
product.

2. Assemblies help in versioning, which is useful to archive previously built
assemblies.

3. Assembly enables security, which can manage by specifying the level of trust for
code from a particular site or zone.

4. Assembly supports culture and language, so when an application is deployed it
can display results according to a specific culture or language.

Creating and Using Custom Assembly

An assembly is either a .DLL or an .EXE file.

Dynamic Link Library (.DLL)

Dynamic Link Library (.DLL) is a class library that contains namespaces, types, and methods to be reused by
other applications. For example, “System” is a .dll, which is a Class library that contains namespaces, types,
and methods that we reuse in our application, i.e., Console.WriteLine(“");

Create a Custom .DLL

These steps will help you to create a .dll
1. Open Visual Studio
2. Select Visual C#

3. Select Class Library as a project template

366

4. Enter name for project
5. Click Ok
New Project
P Recent .NET Framework4.5.2 - Sertby: Default
4 Installed cn
= | I Windows Forms Application
4 Templates =
4 Visual C# P_] WPF Application
b Windows -
cn
Web E Console Application
Android
cn
Cloud g‘ "] ASP.NET Web Application
Extensibility
i05 i Shared Proj
' ject
Silverlight o
ca
Test Ejgﬁ! Class Library (Portable for i05, Android and Windows)
WCF v
Wadion @ Class Library
b Visual Basic
Visual F# na" %
Class Library (Portable)
b Visual C++ f‘;! e
cn
x;::"" @ Sitverlight Application
b JavaScript Y .
b Online Click here to go enline and find templates.
Name: MyCustomLibrary
Location: c\users\aliso\documents\visual studio 2015\Projects

Solution name:

MyCustomLibrary

Figure 14-1. Create an Empty C# Class Library Project

The following code will be shown:

using System;

namespace MyCustomLibrary

public class Class1

{
}

CHAPTER 14 I ASSEMBLY AND REFLECTION

7 X
Search Installed Templates (Ctrl+E) e
-)
Visual C2 Type: Visual C2

A project for creating a C= class library
(.dif)

Visual C#
Visual C2
Visual C#
Visual C#
Visual C=
Visual G2
Visual C=
Visual C=
-
[v] Create directory for solution
["] Add to Source Control

You can clearly see that class library project doesn't have a Main Method. Therefore, a class library
doesn't have an entry point.
Let's create a simple method inside Class1, which returns the square of an integer.

Listing 14-1. Create a Method Inside a Class Library

using System;

namespace MyCustomLibrary

367

CHAPTER 14 © ASSEMBLY AND REFLECTION

{
public class Classl
{
public static int square(int i)
{
return (i * i);
}
}
}

Press Ctrl + Shift + B to build the assembly.
Now, go to the Bin » Debug folder of the project; there you'll see a MyCustomLibrary.dll file.
Congratulations, you've created your first .DLL file.

| MyCustomLibrary.dll
| MyCustomLibrary.pdb

Figure 14-2. Output Files of Class Library Project

Note A member of the class library must be public, so a member can be accessable in another project.

Use a Custom .DLL

A custom .dll can be reused in another application by copying and pasting the .dll file in the root folder of the
application, and then referencing its file path in the Reference Folder.
In the example, we're creating an empty console application and then we'll use myCustomLibrary.dll.

1. Create an Empty C# Console Application.
2. Copy the MyCustomLibrary.dll in the root directory of Console App.

3. Right-click on References Folder in Solution Explorer and click Add Reference.

368

CHAPTER 14 I ASSEMBLY AND REFLECTION

Solution Explorer

cCoOR| o-5CcFB|F -

Search Solution Explorer (Ctrl+;)

1] Solution 'ConsoleApplication1’ (1 project)
4 ConsoleApplication1
b M Properties

¥ App.c(Add Reference...

v & g Add Service Reference...
¥ Add Connected Service...
Add Analyzer...
Manage NuGet Packages...
Scope to This

B New Solution Explorer View

Figure 14-3. Add Custom .DLL File Reference

4. A new window will pop up; click on the “Browse” button to select the
MyCustomLibrar.dll that you've copied in the root folder of the console app and
then Click Okay.

Now, MyCustomLibrary.dll shall be available in the References folder of Console App.

369

CHAPTER 14 ASSEMBLY AND REFLECTION

Solution Explorer

@ e-SCIRE|p =
Search Solution Explorer (Ctrl+;)

fa] Solution ‘ConsoleApplication1’ (1 project)
+ ConsoleApplication1
b Properties
4 u-B References
o Analyzers
=B Microsoft.CSharp
=8 System
=8 System.Core
=8 System.Data
=8 System.Data.DataSetExtensions
=B System.Net.Http
=B System.Xml
=B System.Xml.Ling
¢ App.config
b = Program.cs

Figure 14-4. List of .DLL Files in References Folder

We can use all the public methods and types available in MyCustomLibrary in our console app. For
example, we can write the following code in Main Method.

Listing 14-2. Read a Class Library Inside Main Method

static void Main(string[] args)

{
int i = 4;
int sqri = MyCustomLibrary.Classi.square(i);
Console.WriteLine("Square of {0} = {1}",i, sqri);
}
//0utput

Square of 4 = 16

When code is compiled it matches all the types and methods with the assemblies referenced in the
References folder; if the the types or method aren’t defined in the project or in the reference assemblies,
then an error will occur.

Executeable (.EXE)

Executeable assemblies are those assemblies which have a Main Method defined in it. Main Method is the
entry point of executable assemblies to run. In an operating system, these executeable files take processor
and memory (Stack, Heap) for running, for example, Console App, Windows Form App, WPF App, etc.

370

CHAPTER 14 I ASSEMBLY AND REFLECTION

WinMD Assembly

The concept of WinMD Assembly was introduced when Windows 8 came out. WinMD stands for Windows
Meta Data. It allows the communication between different programming languages. For example, WinMD
library built with C# can be used in a C++ project. It removed the language barrier through Windows
Runtime Component.

Create WinMD Assembly

WinMD Assembly is used in store apps; to make the WinMD Assembly, you must install Windows 8.1 SDK.
At this point, I assume your Visual Studio has Windows 8.1 SDK installed.
Now, to create the WinMD Assembly, follow these steps:

1. Open Visual Studio.

2. Create a new project, select Visual C#» Windows Store, and then select
Windows Runtime Component as a project template and select Okay.

¢ Recent NET Framework 4.5 = Sortby: Defauk - @ i= esrch installed Templates (Cirie £ P~
4 inatalled .
[etankapp xanmy Visual C# Typex Visuel Co
4 Visual C? 2 A proyect for a Windows Runtime
Windows Store] God ape camy) Visual C# SovippRGTL g o v whes by VS
Windeowt Sy

Web P spieapp camy) Visual C#
b Office =
cw
Cloud Lﬁ' Class Library (Windows Store appt) Visual C#
Reporting >
ShareP ot
Siverhght

e
Test @I Unat Test Library (Windows Store apps) Visual C#
WCF ~

Windows Phone
Workflow
LightSwitch
¢ Other Languages
+ Other Project Types
Mcdehng Progects

¢ Online

Windows Funtwne Component
3

Name WindowiRuntimeComponent |
Location: c\Users\ynacn' documents' visual studie 2012\ Projects\App!

Figure 14-5. Create an Empty Windows Runtime Component

Now, create a static method that returns the square root of an integer value.

371

CHAPTER 14 © ASSEMBLY AND REFLECTION

Listing 14-3. Create a Method Inside a Windows Runtime Component Project

public sealed class Classi

{
public static int square(int i)
{
return (i * i);
}
}

Build the assembly and now you can use it in any store app template of any language, i.e., VB.NET, F#, etc.

Note InWinMD assemblies, all types must be sealed, and if polymorphism is required then use interface
on the sealed classed to implement polymorphism.

Global Assembly Cache (GAC)

Global Assembly Cache is a common shared location of a system to store assemblies of all .NET applications
that run on a certain machine. These assemblies are shared by several .NET applications on the computer.

A developer can install his own developed assembly in GAC. It not only gives the advantage of sharing
the same assembly among multiple .NET application but also helps in providing special security. For
example, not all users can delete the assembly; only administrators can remove the assembly.

In addition to security, assembly installed in GAC gives the ability to archive and use multiple versions
of the same assembly.

Install an Assembly in GAC

An assembly (.DLL) can install in GAC only if it has a strong name. The following steps are required to
install an assembly (.DLL) into GAC.

1. Create Strong Name Key and associate it with assembly.

2. Use gacutil.exe.

Strong Name

It ensures the uniqueness among assemblies (even with assemblies having the same names) by ungiue key
pairs. A strong name consists of a unique identity with its public key, version number, text name, culture
information, and a digital signature.

Create a Strong Name Key
Strong Name Key is file that needs to be associated with the assembly to make it a strong name assembly.

1. Open Visual Studio and create an empty C# Class Library Project (build the
project by pressing ctrl+shift+B).

2. Goto StartMenu » Find, Visual Studio Command Prompt » Run it as
Administrator.

372

CHAPTER 14 I ASSEMBLY AND REFLECTION

3. Use Visual Studio Command Prompt to navigate to the root folder of class library
project. e.g., cd “{PathLocation}” press enter (cd “C:\Users\aliso\Documents\
visual studio 2015\Projects\myClassLibrary”). OR cd "{PathLocation}”
press enter.

4. Inside the project’s root folder, create a strong name key by writing a command
“sn -k {KeyName}.snk” (for example, “sn -k myClassLibrarykey.snk”), and press
Enter.

Associate Strong Name Key with Assembly

When a strong name key is generated, it must be associated with an assembly so that the assembly can
become a strong name assembly. To do this, follow the following simple steps.

1. Open the AssemblyInfo.cs file in Visual Studio .NET Solution Explorer, (This file
is underneath the Properties file of solution explorer.)

2. Associate a strong name key with the assembly by adding an assembly attribute
and location of a strong name key, such as [assembly: AssemblyKeyFile("myCl
assLibrarykey.snk")]

3. Press ctrl + shift + B. This will associate the strong name key pair with the
assembly. Remember, Visual Studio must be runing as Administrator.

Use Gacutil.exe

Gacutil.exe is a tool that is used to install a strong name assembly into a global assembly cache. Follow the
following steps to install a strong name assembly into GAC:

1. Run Visual Studio Command Prompt as Administrator.

2. Enter the following command to install a strong name assembly into GAC:
gacutil -i "{file path of strong name assembly}.d1l"

for example, gacutil -i "C:\Users\aliso\Documents\Visual Studio 2015\Projects\
myClassLibrary\myClassLibrary\bin\Debug\myClassLibrary.dll"

OR

If the command prompt already navigated to the folder where a strong name
assembly is stored, then you can directly enter the following command:

gacutil -i myClassLibrary.dll

AssemblyInfo.cs

Whenever a new .NET assembly project is created in Visual Studio, a file named AssemblyInfo is created that
contains attributes used to define, name, description, version, etc.
The AssemblylInfo.cs file can be found in the solution explorer ‘Properties» AssemblyInfo.cs’.

373

CHAPTER 14 © ASSEMBLY AND REFLECTION

faJ Solution 'myClassLibrary’ (1 project)
4 [c#] myClasslibrary

4 o Properties

p =B References

b = Classl.cs

Figure 14-6. AssemblyInfo.cs

Versioning the Assembly

In the development lifecycle (e.g., Development, Test, Production), versioning the assembly helps team
members to identify multiple versions of the same assembly, which helps in troubleshooting a problem or
identifying which assembly to deploy.

In .NET, Versioning is done only on assemblies with strong names. An attribute “AssemblyVersion” is
used to manage the versioning of the assembly.

[assembly: AssemblyVersion("{Major}.{Minor}.{Build Number}.{Revision}")]
OR
[assembly: AssemblyVersion("1.0.0.0")]

It consists of four important parts:

1. Major Version

2. Minor Version

3. Build Number

4. Revision
Major Version

An integer value, incremented for major releases, such as adding new features.

Minor Version

An integer value, incremented for minor releases, such as introducing small changes to existing features.

Build Number

An integer value, typically incremented automatically as part of every successful build performed on the
Build Server. This allows each build to be tracked and tested.

Revision

An integer value, incremented on builds which is released with hotfixes or patches.

374

CHAPTER 14 I ASSEMBLY AND REFLECTION

Reflection in C#

Reflection is used to read attributes (metadata) to obtain information of all assemblies, modules, and types
of a running application.

Basically, reflection converts binary (Low-Level) information to human-readable (High-Level) language
and allows humans (developers) to manipulate the data and behavior of an application at runtime.

In terms of processing, reflection costs a lot of processor power because, by using metadata, it reverse
engineers all the binary data to readable data.

Working with Reflection

System.Reflection namespace contains tons of classes that dynamically allow you to create and use types,
methods, and properties of a running application.

Use Reflection to Read Current Assembly

System.Reflection.Assembly class contains methods and properties used to read and manipulate
information of an assembly at runtime.

Code Snippet

Listing 14-4. Use Reflection to Read Current Assembly

using System;
using System.Reflection;

namespace DemoAssembly

{
class Program
{
static void Main(string[] args)
{
//Get current loaded assembly
Assembly assembly = Assembly.GetExecutingAssembly();
//Get Full Name of the current Assembly
string assemblyName = assembly.FullName;
Console.WriteLine(assemblyName);
}
}
}
//0utput

DemoAssembly, Version = 1.0.0.0, Culture = neutral, PublicKeyToken = null

Explanation

(Listing 14-4) When an application is running, it gets the metadata of the current assembly and reads its full-
name. Assembly Fullname always contains 4 parts, which describe the assembly name, assembly version number,
and assembly culture, and tells if the asssembly is strong named (if it has a public key token associated with it).

375

CHAPTER 14 © ASSEMBLY AND REFLECTION

Use Reflection to Read all Types of an Assembly
Reflection can also read all the types defined in a particular assembly at runtime.

Code Snippet

Listing 14-5. Use Reflection to Read all Types in Current Assembly

using System;
using System.Reflection;

namespace DemoAssembly

{
class Program
{
static void Main(string[] args)
{
//Get current loaded assembly
Assembly assembly = Assembly.GetExecutingAssembly();
//Get all types defined in an assembly
Type[] types = assembly.GetTypes();
//Get information of each type
foreach (Type type in types)
//Return name of a type and its base type
Console.WriteLine("Type Name:{0}, Base Type:{1}",
type.Name, type.BaseType);
}
}
}
class A { }
class B : A { }
}
//0utput

Type Name:Program, Base Type:System.Object
Type Name:A, Base Type:System.Object
Type Name:B, Base Type:DemoAssembly.A

Explanation

(Listing 14-5) Type s a class used to store information of any type. Type class contains methods and
properties used to read and edit values of a specified type.

In the above example, assembly.GetTypes() returns an array of non-static Types. By using properties
like type.Name and type.BaseType we can get the name of a type and its base type respectively.

376

CHAPTER 14 I ASSEMBLY AND REFLECTION

Use Reflection to Read Metadata of Properties and Methods

During runtime, reflection can help to read all the information of a type in an assembly including its
methods, properties, events, etc.

Code Snipppet

Listing 14-6. Use Reflection to Read Metadata of a Property

using System;
using System.Reflection;

namespace DemoAssembly

{
class Program
{
public int Age { get; set; }
public string Name { get; set; }
static void Main(string[] args)
{
//Get current loaded assembly
Assembly assembly = Assembly.GetExecutingAssembly();
//Get all types defined in an assembly
Type[] types = assembly.GetTypes();
//Dig information of each type
foreach (Type type in types)
//Return name of a type
Console.WriteLine("Type Name:{0}, Base Type:{1}",
type.Name, type.BaseType);
//Get all properties defined in a type
PropertyInfo[] properties = type.GetProperties();
foreach (PropertyInfo property in properties)
{
Console.WritelLine("\t{o} has {1} type",
property.Name, property.PropertyType);
}
}
}
}
class A
{
public int Random { get; set; }
}
class B { }

377

CHAPTER 14 © ASSEMBLY AND REFLECTION

}
//0utput

Type Name:Program, Base Type: System.Object
Age has System.Int32 type
Name has System.String type

Type Name:A, Base Type:System.Object
Random has System.Int32 type

Type Name:B, Base Type:System.Object

Explanation

(Listing 14-6) PropertyInfo class is used to store information of a property. It contains the method and
properties used to read and edit data of a property. By default, Type.GetProperties() returns all non-static
public properties of a type.

Property.Name returns the name of a property. Property.PropertyType returns the type of the property.

Listing 14-7. Use Reflection to Read Metadata of a Method

using System;
using System.Reflection;

namespace DemoAssembly

{

class Program

{
public void Show() { }
public int SqRoot(int i)
{

}

return (i * i);

static void Main(string[] args)

{
//Get current loaded assembly

Assembly assembly = Assembly.GetExecutingAssembly();

//Get all types defined in an assembly
Type[] types = assembly.GetTypes();

//Dig information of each type
foreach (Type type in types)
{

//Return name of a type
Console.WriteLine("Type Name:{0}, Base Type:{1}",
type.Name, type.BaseType);

//Get all non-static methods of a type
MethodInfo[] methods = type.GetMethods();

foreach (MethodInfo method in methods)
{
Console.WriteLine("\tMethod Name:{0}, Return Type:{1}",

378

CHAPTER 14 I ASSEMBLY AND REFLECTION

method.Name, method.ReturnType);

}

//0utput

Type Name:Program, Base Type:System.Object
Method Name:Show, Return Type:System.Void
Method Name:SqRoot, Return Type:System.Int32
Method Name:ToString, Return Type:System.String
Method Name:Equals, Return Type:System.Boolean
Method Name:GetHashCode, Return Type:System.Int32
Method Name:GetType, Return Type:System.Type

Explanation

MethodlInfo is a class that stores information of a method. MethodInfo class contains methods and
properties that are used to read and edit data of a method. By default, Type.GetMethods() returns all non-
static public methods of a type.

method.Name returns the name of a method. method.ReturnType returns the return type of a method.

The output of a program also showed “ToString’} Equals’’GetHashCode’; and "GetType” methods
which aren't defined in Program class. These methods were defined in System.Object class. Since every class
inherits System.Object class, the program showed these methods too.

Similarly, there are other methods and properties defined in System.Type class which are useful to get
not only information about methods and properties but also about events, interfaces, fields, etc.

Use Reflection to Get and Set Value of Object’s Property

Reflection can also be used to read and write actual value stored in a property of some class's instance at
runtime.

Code Snippet

Listing 14-8. Use Reflection to Read Values of a Property

using System;
using System.Reflection;

namespace DemoAssembly

{
class Person
{
public int Age { get; set; }
public string FirstName { get; set; }
}

class Program

{

379

CHAPTER 14 © ASSEMBLY AND REFLECTION

static void Main(string[] args)

{

var personobj = new Person { FirstName = "Sundus", Age = 21 };
var personobj2 = new Person { FirstName = "Ali", Age = 22 };

//Store Metadata of Person Type in Type's Object
//return Type of 'Person' class
Type persontype = typeof(Person);

//Specify which property information is required
//Return metadata of specified property
PropertyInfo nameproperty = persontype.GetProperty("FirstName");

//Specify 'instance' (personobj) of 'Type' (Person)
//Whose 'property' (nameproperty) value is required
var value = nameproperty.GetValue(personobj);

Console.WritelLine("{0} = {1}", nameproperty.Name, value);

}
//0utput

FirstName = Sundus

Explanation

To get a value of a specified object's property, the following steps are required:
1. Return and store the type of Object by using typeof operator or GetType method.
2. Return and store metadata of specified property of a type.

3. Use GetValue() method. Specify the type's instance whose value is about to get.
Code Snippet

Listing 14-9. Use Reflection to Set and Read Values of a Property

using System;
using System.Reflection;

namespace DemoAssembly

{
class Person
{
public int Age { get; set; }
public string FirstName { get; set; }
}

class Program

{

380

CHAPTER 14 I ASSEMBLY AND REFLECTION

static void Main(string[] args)

{
var personobj = new Person { FirstName = "Sundus", Age = 21 };
var personobj2 = new Person { FirstName = "Ali", Age = 22 };

//Store Metadata of Person Type in Type's Object
//return Type of 'Person' class
Type persontype = typeof(Person);

//Specify which property information is required
//Return metadata of specified property
PropertyInfo nameproperty = persontype.GetProperty("FirstName");

//Specify 'instance' (personobj) of 'Type' (Person)
//Mhose 'property' (nameproperty) value is about to change
nameproperty.SetValue(personobj, "Lakhtey");

//Specify 'instance' (personobj) of 'Type' (Person)
//Whose 'property' (nameproperty) value is required
var value = nameproperty.GetValue(personobj);

Console.WriteLine("{0} = {1}", nameproperty.Name, value);

}
//0utput
FirstName = Lakhtey

Explanation

To set a value of a specified object's property, the following steps are required:
1. Return and store the type of Object by using typeof operator or GetType method.
2. Return and store metadata of the specified property of a type.

3. Use SetValue() method. Specify the type's instance and value that is about to set.

Use Reflection to Invoke a Method of an Object

Reflection can also be used to invoke any defined method of an object anytime during runtime.

Code Snippet

Listing 14-10. Use Reflection to Invoke the Method of an Object

using System;
using System.Reflection;

namespace DemoAssembly

{

381

CHAPTER 14 © ASSEMBLY AND REFLECTION

class Person

{

public int Age { get; set; }
public string FirstName { get; set; }

public int Show()

{

}

Console.WriteLine("FirstName = {0}", FirstName);

return Age;

class Program

{

static void Main(string[] args)

{

}

//0utput
FirstName =
Age = 21

Explanation

var personobj = new Person { FirstName = "Sundus", Age = 21 };
var personobj2 = new Person { FirstName = "Ali", Age = 22 };

//Store Metadata of Person Type in Type's Object
//return Type of 'Person' class
Type persontype = personobj.GetType();

//Specify which method's information is required

//Return metadata of specified method

MethodInfo methodinfo = persontype.GetMethod("Show");

//Provide instance (personobj) name whose method is about to invoke
//pass parameter value 'null' if specified method has parameter

var returnValue = methodinfo.Invoke(personobj, null);

Console.WriteLine("Age = {0}", returnvalue);

Sundus

To Invoke a specified method at runtime, the following steps are required:

1. Return and store the type of Object by using the typeof operator or GetType
method.

2. Return and store metadata of a specified method of a type.

3. Use Invoke() method. Specify the type's instance and parameter values to invoke
the method of a specified type's instance.

382

CHAPTER 14 I ASSEMBLY AND REFLECTION

Use Reflection to Get Private Members

By default, reflection is used to get all public members, but with some code tweaking it can also be useful to
find private members of a type. To get the private member, we specify the BindingFlags.NonPublic enum in
the paremeter of Type.GetFields() and Type.GetMethods() methods, etc.

Code Snippet

Listing 14-11. Use Reflection to Read Private Members

using System;
using System.Reflection;

namespace DemoAssembly

{
class Person
{
private int Age { get; set; }
private string FirstName { get; set; }
public Person(int age, string name)
{
this.Age = age;
this.FirstName = name;
}
}

class Program

{

static void Main(string[] args)

{
var personobj = new Person (21, "Sundus");
var personobj2 = new Person(22, "Ali");

//Store Metadata of Person Type in Type's Object
//return Type of 'Person' class

Type persontype = personobj.GetType();
//Pass BindingFlags to specify what kind of
//data member you want.

//NonPublic = Private

//Non-Static = Instance

PropertyInfo[] props =
props.GetProperties(BindingFlags.NonPublic | BindingFlags.Instance);

foreach (PropertyInfo prop in props)

Console.WritelLine("{0} = {1}", prop.Name, prop.GetValue(personobj));
}

383

CHAPTER 14 © ASSEMBLY AND REFLECTION

}

//0utput

Age = 21

FirstName = Sundus

Explanation

GetProperties() is used to return property information by using the BindingFlags enums; this method

can return the specified type of properties. These enums tell a property should be non-public and non-
static, etc. When passing bindingflags, use the vertical bar pipe '|' to add more than one BindingFlag in the
GetProperties() method.

Use Reflection to Get Static Members

By default, reflection is used to get the public instance member of a type, but by using BindingFlags.Public
and BindingFlags.Static together we can get the public static members of a type.

Code Snippet

Listing 14-12. Use Reflection to Read Static Member

using System;
using System.Reflection;

namespace DemoAssembly

{
class Person
{
public static string company = "Microsoft";
}

class Program
{
static void Main(string[] args)
{
//Store Metadata of Person Type in Type's Object
//return Type of 'Person’ class

Type persontype = typeof(Person);

//Pass BindingFlags to specify what kind of
//data member you want.
//BindingFlags.Static = Static Member
//BindingFlags.Public = Public Member

FieldInfo[] fields =
persontype.GetFields(BindingFlags.Public | BindingFlags.Static);

384

CHAPTER 14 I ASSEMBLY AND REFLECTION

foreach (FieldInfo field in fields)

{
Console.WritelLine("{0}", field.Name);
}
}
}
}
//0utput
Company

Attributes in C#

Attributes are a kind of metadata for tagging C# code (types, methods, properties, and so forth). Attributes
can be used with reflection to query down C# code at runtime, for code generation, or in editor at compile
time in any number of ways (for example, to hide/seek windowsform controls from toolbar).

Syntax for Specifying an Attribute to C# Code

[attribute(parameter name = value, ...)]
Element

Create a Custom Attribute

In term of programming, attributes are C# classes, inherited from the type “Attribute” When creating a
custom attribute, it is a rule to suffix its class name with “Attribute” For example, see the below code snippet.

class MyCustomAttribute : Attribute
{

}

where MyCustomAttribute is the name of a custom attribute that inherits a class “Attribute”.

Use Custom Attribute with Reflection

By using reflection, we can query down any C# code that was marked with a custom attribute.

Specify a Custom Attribute on a C# Code (Class, Method, etc)

In the example, a custom attribute is going to specify on Class, Method, and Properties, and then we'll use
reflection to query it down.

Code Snippet

Listing 14-13. Use Custom Attribute on a C# Code

using System;
using System.Ling;

385

CHAPTER 14 © ASSEMBLY AND REFLECTION

using System.Reflection;

namespace DemoProject

{
class MyCustomAttribute : Attribute

{
}

[MyCustom] //Class, Marked with Custom Attribute
class Person

{
//Property, Without Custom Attribute
public int ID { get; set; }
[MyCustom] //Property, Marked with Custom Attribute
public int Age { get; set; }
//Method, Without Custom Attribute
public void Bye()
{
Console.WriteLine("Bye, world!");
}
[MyCustom] //Method, Marked with Custom Attribute
public void Hi()
{
Console.WritelLine("Hi, world!");
}
}

//Class, Without Custom Attribute
class Machine

{
}

public int ID { get; set; }

class Program

{

static void Main(string[] args)

{
Assembly assembly = Assembly.GetExecutingAssembly();

//Get all types that are marked with 'MyCustomAttribute’

var types =
from t in assembly.GetTypes()
where t.GetCustomAttributes<MyCustomAttribute>().Count() > 0
select t;

foreach (var type in types)
{

386

CHAPTER 14 I ASSEMBLY AND REFLECTION

Console.Writeline(type.Name);

//Get all properties which are marked with 'MyCustomAttribute'
var properties =
from p in type.GetProperties()
where p.GetCustomAttributes<MyCustomAttribute>().Count()> 0
select p;

foreach (var property in properties)

{
}

//Get all methods which are marked with 'MyCustomAttribute'
var methods =
from m in type.GetMethods()
where m.GetCustomAttributes<MyCustomAttribute>().Count()> 0
select m;

Console.WriteLine("\tProperty Name: {0}", property.Name);

foreach (var method in methods)

{
}

Console.WriteLine("\tMethod Name: {0}()", method.Name);

}
//0utput

Person
Property Name: Age
Method Name: Hi()

Explanation

[MyCustom] = [MyCustomAttribute] because .NET framework already knows “Attribute” is a suffix, so it is a
feature of C# which allows it to ignore suffix.

In above code snippet (Listing 14-13), a custom attribute of name “MyCustomAttribute” is created. This
attribute [MyCustom)] is marked on a class, property, and method.

In the main method, by using reflection, all the types, properties, and methods which were marked with
“MyCustomAttribute” can be found by using the GetCustomAttributes<TAttribute>() method.

Declaring Properties in Custom Attribute Class

Properties can be declared in a custom attribute class. Values of these properties can be assigned when an
instance of custom attribute is attached to any C# code element.
Only public property with get;set; can declare in attribute class.

387

CHAPTER 14 © ASSEMBLY AND REFLECTION

Code Snippet

Listing 14-14. Read Attribute of a C# Code

using System;
using System.Reflection;

namespace demoProject

{
class DeveloperAttribute : Attribute
{
public string Name { get; set; }
public int Age { get; set; }
}
[Developer(Name = "Ali Asad", Age = 22)]
class VehicleApp
{
public int Wheels { get; set; }
public string Color { get; set; }
}
class Program
{
static void Main(string[] args)
{
[/¥¥¥¥¥%*%Retrieve Property Valueskidkkkkkkx//
//Get types
Type vtype = typeof(VehicleApp);
Type atype = typeof(DeveloperAttribute);
//get the developerattribute attached with vehivle type
DeveloperAttribute developer =
(DeveloperAttribute)Attribute.GetCustomAttribute(vtype, atype);
Console.WritelLine(developer.Age);
Console.WritelLine(developer.Name);
}
}
}
//0utput
22
Ali
Explanation

Only public property can be used in a custom attribute class. Its value can be assigned when the attribute is

attached to any C# code. By using the Attribute.GetCustomAttribute() method, the value stored in properties
of an attribute can be retrieved. To retrieve a custom attribute instance from a class, we need to specifiy what
type of Attribute it is and what type of class it is attached to by using the typeof operator or getType() method.

388

CHAPTER 14 I ASSEMBLY AND REFLECTION

Declaring Constructor in Custom Attribute Class

A constructor can be declared in a custom attribute class in the same way that it is declared in any C# class.
Constructor can contain a parameter which can also be an optional parameter. Constructor is useful to
assign values to properties defined in custom attribute class.

Code Snippet

Listing 14-15. Declare a Constructor in Custom Attribute Class

using System;

namespace demoProject

{
class DeveloperAttribute : Attribute
{
public string Name { get; set; }
public int Age { get; set; }
public DeveloperAttribute(string name, int age = -1)
{
this.Name = name;
this.Age = age;
}
}
[Developer("Ali Asad")]
class VehicleApp
{
public int Wheels { get; set; }
public string Color { get; set; }
}
[Developer("Sundus”, 21)]
class Program
{
static void Main(string[] args)
{
//T0 DO:
}
}
}
Explanation

By specifing an optional parameter in constructor we can have the advantage of either passing a value
or discarding it. This feature of using constructor in custom attribute is helpful when providing optional
information.

389

CHAPTER 14 © ASSEMBLY AND REFLECTION

Use AttributeUsage on Custom Attribute Class

AttribtuteUsage tells on what C# code a custom attribute can be applied. In the parameter of AttributeUsage,
we use AttributeTargets to restrict a custom attribute to only be applied on those enums (Class, Method,
Property, etc). Use a vertical bar pipe '|' to add more than one AttributeTargets in the constructor of
AttributeUsage.

The following are some commonly used enums of AttributeTargets that are useful for applying
restrictions on C# Code.

Table 14-1. AttributeTargets Enums List

AttributeTargets Enums Explanation

All Attribute can be applied to any C# code element
Class Attribute can be applied to C# class

Constructor Attribute can be applied to constructor
Delegate Attribute can be applied to a delegate

Enum Attribute can be applied to an enumeration
Field Attribute can be applied to a field

Interface Attribute can be applied to an interface

Method Attribute can be applied to a method

Property Attribute can be applied to a parameter

Struct Attribute can be applied to a struct

Syntax for Specifying an AttributeUsage to Custom Attribute Class

[AttributeUsage(AttributeTargets.Class, ...)]
Class SampleAttribute : Attribute{}

Code Snippet

Listing 14-16. Use Attribute Usage to Limit the Use of Custom Attribute Class for Only Certain C# Code
using System;

using System.Lling;
using System.Reflection;

namespace DemoProject

{
//Tells MyCustomAttribute can only be use on a Class and Property

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Property)]
class MyCustomAttribute : Attribute

{
}

[MyCustom] //Class, Marked with Custom Attribute
class Person

390

CHAPTER 14 I ASSEMBLY AND REFLECTION

{
[MyCustom] //Property, Marked with Custom Attribute
public int Age { get; set; }
//[MyCustom] //Cannot use MyCustom on Method
public void Hi()
{
Console.WritelLine("Hi, world!");
}
}
class Program
{
static void Main(string[] args)
{
Assembly assembly = Assembly.GetExecutingAssembly();
//Get all types that are marked with 'MyCustomAttribute’
var types =
from t in assembly.GetTypes()
where t.GetCustomAttributes<MyCustomAttribute>().Count() > 0
select t;
foreach (var type in types)
{
Console.WriteLine(type.Name);
//Get all properties which are marked with 'MyCustomAttribute’
var properties =
from p in type.GetProperties()
where p.GetCustomAttributes<MyCustomAttribute>().Count() > 0
select p;
foreach (var property in properties)
{
Console.WriteLine("\tProperty Name: {0}", property.Name);
}
}
}
}
}
//0utput
Program
Property Name: Age
Explanation

By using AttributeUsuage and specifiying AttributeTargets, we restricted the use of MyCustomAttribute only
for specified targets.

391

CHAPTER 14 © ASSEMBLY AND REFLECTION

Use ILdasm.exe to View Assembly Content

Intermediate Disassembler (ILdasm) is a tool used to parse any .NET assembly into a human-readable
format.

Such parsed information is useful to determine all the reference assemblies used in the specified assembly
(.dll or .exe). It also displays the metadata, namespaces, types, and interfaces used within the assembly.

Use the following steps to parse any assembly in ildasm.exe:

1. Create and build an empty console C# application.
2. Goto Start Menu and open Visual Studio Command Prompt.

3. Use Visual Studio Command Prompt to navigate to the root folder of the C#
console project that you just created. e.g., cd "{PathLocation}" press enter (cd
"C:\Users\aliso\Documents\visual studio 2015\Projects\myConsoleApp\bin\
Debug"). OR cd “{PathLocation}” press enter.

4. Inside the project's root folder, open .exe or .dll of the project file with ildasm.
exe by entering a command “ildasm {assemblyname}’, for example “ildasm
myConsoleApp.exe’, and press enter.

In the following image you can see the application is parsed into human-readable format. It displays the
application MANIFEST, myConsoleApp. The MANIFEST information can be readable by double clicking it.
Similarly, every piece of file content can be readable in an intermediate language by double clicking it.

7 myConsoleApp.exe - IL DASM - O X
File View Help

=B myConsoleApp.exe

P MANIFEST
- @ myConsoleapp
& myConsoleApp.Program
P .class private auto ansi beforefieldinit
B .ctor: void()
B Main : void{string[])

.assembly myConsolefpp A

Figure 14-7. Open an Assembly in IL-DASM

392

CHAPTER 14 I ASSEMBLY AND REFLECTION

Summary

e Exception is an error that occurs at runtime and may break the execution of an
application.

e Anassemblyis the output of the compiled code. It can be either a .DLL or an .EXE file.

e Public Assembly is also known as a strong named assembly, which has a strong
name key associated with it.

e Reflection is used to read attributes (Metadata) to obtain information of all
assemblies, modules, and types of a running application.

e Attributes are a kind of metadata for tagging C# code (types, methods, properties,
and so forth).

¢ Intermediate Disassembler (ILdasm) is a tool used to parse any .NET assembly into
human-readable format.

Code Challenges
Challenge 1: Install a .DLL to Global Assembly Cache

It’s not a code challenge, but rather a practice session in which you have to create a .dll file and install it to a
Global Assembly Cache.

The solution is available in this chapter but don't look at it until you forget steps for installing an
assembly to a GAC.

Practice Exam Questions

Question 1

Which of the following commands is required to create a strong name key?
A) sn-k{assembly name}.snk
B) snk{assembly_name}.snk
C) gacutil -i {assembly_name}.snk

D) gacutili{assembly_name}.snk

Question 2
Which of the following methods is used for getting the information of the current assembly?
A) Assembly. GetExecutingAssembly();
B) Assembly.GetExecutedAssembly();
C) Assembly.GetCurrentAssembly();
D) Assembly.ExecutingAssembly();

393

CHAPTER 14 © ASSEMBLY AND REFLECTION

Question 3

Which bindingflags are useful for getting the private data instance?

A) BindingFlags.NonPublic | BindingFlags.Instance

B) BindingFlags.Private | BindingFlags.Instance

C) BindingFlags.NonPrivate | BindingFlags.NonStatic

D) BindingFlags.Private | BindingFlags.NonStatic
Answers

1. A

2. A

3. A

394

CHAPTER 15

Debugging and Diagnostics

When you are working in the development of your application, you will normally encounter unexpected
problems due to logical or runtime errors, even if the application is being tested or in production and you
want to monitor the health of an application or to gather the extra information that you need to identify
errors or bugs. To take care of such problems or identify and fix such errors or monitor an application’s
health, C# and Microsoft Visual Studio helps us out in this case to provide classes and tools for debugging
and diagnostics.

In this chapter, we will learn about:

1. Debugging
Compiler Directives
Build Types
Diagnostics

Logging and Tracing

e @ ~ w Db

Profiling and Performance Counter

We will understand these main concepts along with sub-concepts (described below) that are useful for
debugging and diagnostics.

Debugging

Debugging is the process of identifying and removing the errors from your application. It is just like a virtual
execution of code in front of you and you can see the changes taking place in your code. Visual studio
provides the facility to interact with such virtual execution of code where you can watch the execution and
changes taking place, and perform other features provided like “Breakpoint’, “Step over” and “Step into’,
etc. The changes taking place in front of you help to identify the error or logical mistake, as you can see the
changing in value whether they are per requirement or not and then ultimately the error is identified and
you can correct them after stopping the debugging process.

You can start the debugging process for your application by pressing F11 from in Visual studio or make
a breakpoint to start debugging from the specific point.

© Ali Asad and Hamza Ali 2017 395
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_15

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

Figure 15-1 shows the debugging on simple code:

=9 i A I R SERE D PContiwe- . B Iu N 38
] BocksS Theead [10534] Main Thread - Y Stack Frame: BookSnippets Program Mamn
2 [BookSnippets « | ", BookSnippets Program @, Mam{stnng[] args
4
namespace BookSnippets
{
class
static void Main(string[] args) -
{
int age = 18;
[if (age==15)
{ @ age 10
WriteLine("Control st
else
_r
.WriteLine("Control st
-ReadLine();
90
Autos * A x il Stack -3 x
Name Value Type Mame Lang
@ age int © BookSnippets.exe’BookSnippets. Program Main{string(] args) Line 18

Figure 15-1. Debugging

For example, we have a scenario in which the line “Control should be here” must be printed. For this,
the value of age must be 10 but the assigned value is 10, but the developer mistakenly makes a check on
age for value 15 instead of 10; therefore, he/she is not getting any idea why “Control should be here” is not
printed. In such a scenario, the developer will debug the code to find the error or mistake by pressing F11 or
marking the breakpoint at a specific location by placing the cursor at that position and pressing F9 to identify
where the problem is occurring, or for which condition the code is not behaving according to requirement.
During debugging, he/she can watch the changes by hovering the cursor over the variables as mentioned
in the picture above. In the above picture, when the developer hovers the cursor in the “age” variable
(which gives age=10 and, on the spot, the developer tends to know that the value of age is 10), that’s why
the condition gets wrong. The error is identified now. After identification, he/she gets to know where is the
problem and then is able to correct it.

Debugging is performed line by line (step by step). You can perform other functionalities to pass
through code, such as step over, step into, and step out.

Visual Studio provides many debugging-related functionalities to perform. Their details are not in
Exam-70-483. You can find more detail about them from the following link:

http://csharp.net-tutorials.com/debugging/introduction/

396

http://csharp.net-tutorials.com/debugging/introduction/

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Choose appropriate Build Type

There are two default build configurations for a project in Visual Studio. When you build your project, a
setting from a selected configuration is used. You can also define your own build configuration. Default
configurations are:

1. Debug Mode: In this mode of configuration, extra information of code is created
which helps for the debugging process. In this mode, the code does not optimize.
This mode is generally used during development for debugging purposes.

2. Release Mode: In this mode of configuration, code is optimized and no extra
code is generated for debugging purposes; that’s why debugging cannot be done
in this mode and generally is used for the final build of your project.

Listing 15-1 illustrates the difference between two configuration modes.

Code Snippet

Listing 15-1. A simple program illustrating the difference between two configurations.

int age = 10;
if (age == 10)

Debug.Write("Condition is True");
Console.WriteLine("Age is: " + age);
}
else
{
Debug.Write("Condition is False");
Console.WriteLine("Age is: " + 0);

}

When this code is executed in “Build” mode, “Condition is True” is outputted in the “Output Window”
(a tool window in Visual Studio) and “Age is: 10” will be outputted in the Console screen. Debug is a class
used in “Debug Mode” for debugging of code to report errors, and is available to execute or build under
‘Debug’ Mode. The detail of this class is explained in the “Diagnostics” topic.

Output * 4 Xx
Show output from: Debug - ||

TS LI COU TAIUT™S 1103 TALLTU WAL LUUT O L\UAU).
The thread @x343c has exited with code @ (@x8).
'BookSnippets.vshost.exe' (CLR v4.8.308319: BookSnippets.vshost.exe): Loaded 'C:\Users\Hamza Ali\Documents
'BookSnippets.vshost.exe' (CLR v4.8.30319: BookSnippets.vshost.exe): Loaded 'C:\WINDOWS\Microsoft.Net\ass

Condition is True| %

-

Figure 15-2. Result at OutputWindow

Age is: 10

Figure 15-3. Output in Console
397

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

When the same code is executed in “Release” Mode, it will not output the “Condition is True” in the
Output Window, as Debug class and its functions are ignored or removed by Release Mode and executed the
renaming code by optimizing it. “Age is: 10” is outputted in Console Screen.

Note In release configuration, a lot of code could be removed or rewritten; that’s why Release Mode is
faster than Debug Mode and better regarding performance-vise. It’s mainly used for a production environment.

Creating and Managing Compiler Directives

C# supports compiler directives or preprocessor compiler directives that are the instructions for the
compiler, which helps in the compilation process. These directives tell the compiler how to process the
code. Normally these are used to help in conditional compilation. In C#, they are not used to create macros
(fragments of code) unlike in C or C++.

Directives start from “#” and do not end with a semicolon as they are not statements. There must be
only one preprocessor directive on a line.

C# offers the following directives to work with:

Table 15-1. Compiler Directives

Directibes Description

#define #define directive is used to define a symbol which might be a character or sequence of
characters.

#undef #undef directive is used to undefine the defined symbol using #define directive or in
compiler option. It must be on the top of non-directive code.

#if #if directive is used to evaluate the symbol defined and execute its code if it finds the
symbol defined. This directive is always followed by #endif directive.

#else #else is used to create a compound directive with #if or #elif and execute its code when #if
or #elif is false.

#elif #elif directive also creates a compound directive with #if or elif and executes its code when
it finds its condition or symbol to be true.

#endif This directive is used with #if directive, which tells the end of a conditional directive.

#error #error directive is used to generate error from a specific location in your code.

#warning Its use is the same as #error directive but generates a level one warning.

#line #line directive is used to modify the existing line number of compiler and output filename

for errors and warnings.

#define

It is just used to define a symbol. You cannot assign any value to a defined symbol using #define directive.
Symbols are normally conditions which are used in #if or #elif to test the condition for compilation.

Note #define directive must be on the top in the file.

398

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

The following code snippet shows how you can define a symbol:
#define Hamza

There should not be a conflict between the name of a symbol and a variable.
You can also define a symbol in compiler options by navigating to properties of Project and:

LIS Program.cs v

Application ; : -
Configuration: | Active (Debug) ~ Platform: | Active (Any CPU) ~
Build*
Build Events General 2
Debug " _— :
Conditional compilation symbols: Ihamzd e]
Resources =
[] Define DEBUG constant
Services
. [Define TRACE constant
Settings
Reference Pathe Platform target: Any CPU v
Signing B4 Prefer 32-bit
Security O Allow unsafe code
Publish [Optimize code

Code Analysis -
¥ Errors and warnings

Warning level: 4 v

Suppress wamings:

Treat warnings as errors
® None
O Al

(O Specific wamings:
Output

Qutput path: bin\Debug\ Browse... i

Figure 15-4. Project properties

Note You cannot define the constants with #define directive in C# as possible in C++.

#if #elif #else and #endif

These directives are called conditional directives. #if or #elif is used to evaluate a symbol or condition that
is defined using a #define directive or in a compiler option. #if directive operates on Boolean value

and checks if the symbol or condition is defined (true) or not (false) and, based on this, its execution is
performed. #if directive must end with an #endif directive.

399

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

Listing 15-2 shows how to use #if and #endif directives.

Code Snippet

Listing 15-2. #if and #endif directives

#define hamza
using System;
namespace BookSnippets

{
class Program
{
static void Main(string[] args)
{
#if hamza
Console.WriteLine("hamza (Symbol) is defined");
#elif ali
Console.WriteLine("ali (symbol) is defined");
#else
Console.WriteLine("No Symbol Defined");
#endif
Console.ReadlLine();
}
}
}

#if or #elif directives evaluate Boolean value or symbols defined to proceed. If a symbol is defined, that
means Boolean value is true and an #if or #elif directive executes its body. If none of the symbols are defined,
the body of #else will be executed.

The following operator can be used in conditional directives:

1. ==
1=
&&
I

You can view and learn about the complete list of preprocessor directives in C# from the following link:
https://msdn.microsoft.com/en-us/library/ed8ydiha.aspx

El A

#error

#error is commonly used in a conditional directive. This directive generates a specific error at a specific
location and shows in “Error List” (tool window in Visual Studio). The following code snippet shows how to
use #error directive:

#if hamza
Console.WriteLine("hamza (Symbol) is defined");
#else
Console.WriteLine("No Symbol Defined");
#error No Symbol Defined
#endif

400

https://msdn.microsoft.com/en-us/library/ed8yd1ha.aspx

CHAPTER 15 ' DEBUGGING AND DIAGNOSTICS
“Error list” window shows the error “No Symbol Defined” along with the line number and file name, etc.

Entire Sclution - [1Emer | 4 OWamnings [OMessoges | (| Build - intesSense - ‘ : p-
Code Description = Project File Line SuppressionSt. Y

) C51029 #emor No Symbel Defined BockSnippets Program.cs B Acive

Figure 15-5. Error list

This directive generates user-defined errors. #warning directive is also used in the same manner.

#line

You can renumber the compiler line number using this directive to give a line number and optionally
rename the filename by giving the name (in string format) in which the code resides. You can also make the
line number hidden by #line hidden (that will hide successive lines from debugger) and turn back to normal
line number behavior by using #line default.

It can be used in debugging where you want to go to a specific line number or skip that line number.
You can also show custom warnings with custom line numbers using this directive, i.e., if you have a value
to validate and, when its validation fails, you output some message with a defined line number on your wish
(supposed line number on which you think during development a warning should display).

Listing 15-3 shows how to use #line directive with its behaviors:

Code Snippet

Listing 15-3. #line directive

static void Main(string[] args)

{

Console.WritelLine("Default/Normal Line No")
#line 100

Console.WritelLine("Override Line No");
#line hidden

Console.WritelLine("Hidden Line No");
#line default

Console.WritelLine("Default/Noraml Line No");
}

Debug this code by pressing F11 and you will move line by line, but debugger will not encounter with
the following statement “Console.WriteLine("Hidden Line No");” as its line number is hidden; that’s why
debugger will miss it and move to line number 101 (if any) and then navigate to default behavior.

Understand PDBs and Symbols

Program Database File (PDB) is a file created with the name of the Project you made, along with extension
.pdb on the compilation of your code or project. A PDB file is a file containing information about your code
or program which is used by debugger for debugging purposes. It stores a list of all symbols present in a
module (DLL or EXE) along with the line number where they are declared and address where they stored.
This information helps for debugging or throwing error at a specific location.

401

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

The information included in a PDB file can be controlled by using a Project’s properties. To do this,
right-click on the Project and select Properties. Click on the “Advance” button in Build Tab. A dialog will
open where you can specify the information included in a PDB file; to use “Debug Info’; drop down to select
“full” or “pdb-only”.

The choice “full” is the default selection for the PDB file in Debug Mode and “pdb-only” is for Release
Mode. These two choices of “Debug Info” control the information to store in a PDB file about Program or
code for debugging. One more option available for Debug Info is “none’, which does not generate a PDB file
and hence you cannot debug your code even in Debug Mode with a “none” selection.

When you select the “full” option for Debug Info (which is the default selection in Debug Mode), a
PDB file is generated and an assembly has debug information; but for a “pdb-only” selection, a PDB file is
generated with no modification in assembly and Visual Studio does not include a Debuggable attribute and
hence debugging cannot perform in Release Mode or on a “pdb-only” selection.

The reason a PDB file is generated in Release Mode is to have information for exception messages about
where the error occurred, i.e., stack trace or target of error, etc. Most importantly, you cannot trace your
errors or message without having a PDB file.

Note A PDB file is created for a specific build and it can only be used for that build. A PDB file cannot
debug the code from a different build.

Diagnostics

How do you tackle such a situation in which an application is in a Production environment and the user
faces some errors or performance-related issues regarding an application or how to trace down where the
problem is occurring? Diagnostics helps you to tackle such a situation, because Debugging is not handy for a
production environment.

Debugging helps you in Debug mode, which we normally use in a development phase where we can
find out errors and correct them; but if the same thing happens after the release of an application or when
an application is in real use, then we can diagnose our application to tackle such problems. Although remote
debugging is possible (which you can do for your application, but the application must be hosted), it means
you can’t do debugging for your offline applications. Also, for remote debugging there must be a Debug
Mode while publishing the application, which is not preferable for releasing the application.

To diagnose an application, we normally do Instrumenting of our application, in which different
approaches can be used.

Instrumenting an Application

To instrument an application, features of diagnostics are added into it to study its behavior. Features of
diagnostics means to add code for logging and tracing or to monitor applications’ health. This makes you
able to trace the program execution (i.e., what error occurred at which location in code) and gives the reason
of performance-related problems without doing debugging.

There are some ways to instrument your application to perform diagnostics:

1. Logging and Tracing
2. Profiling the Application

402

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Logging and Tracing

Tracing of an application means to track down the application to know what is going on in an application.
You can get to know where the error is occurring by tracing your application and following the program’s
execution. You can follow the program’s execution to know which methods it is going to call, which decision
it is making, the occurrence of errors and warnings, etc. It provides the detailed information to instigate an
issue when there is any problem in an application.

Logging gives you the facility to record the errors or report the errors. Normally it is applied on a
running application (in real use) to receive information messages about the execution of an application.

Tracing has three main phases:

1. Instrumenting: Adding tracing code in your application.

2. Tracing and logging: The tracing code traces the issues and writes to a specified
target. The target might be an output window, file, database, or event log.

3. Analysis: After getting the issues described in a specific format or written in a
specific target, you analyze the details and identify the problem.

C# provides classes to trace and log errors: Debug and Trace.

Working with Debug and Trace Class

Debug and Trace classes can be used to trace and log the errors that occurred in an application. Normally,
Debug and Trace classes use Listeners to log traced errors. These classes provide a couple of methods for
tracing and put those traced errors into files, a database, or EventLogs.

Debug class is normally used in Debug Mode for tracing and logging, but what if you need to perform
tracing and logging in an application which is in real use? Trace class comes in handy in such situations. It is
used in Release Mode.

These classes provide some of the common functions with the same working:

Table 15-2. Debug and Trace Common Methods

Debug Trace Description

Assert Assert Checks the Boolean condition and throws an exception on a false
condition with a call stack (traced information about error).

Flush Flush Flushes the buffers and puts the write-buffered data into Listeners.

Indent Indent Increases the Indent by one level.

UnIndent UnlIndent Decreases the indent by one level.

Write Write Writes to message to trace listener.

WriteIf Writelf Takes the condition and Writes the message to trace listener if the

condition is true.

WriteLine WriteLine Writes the message to Debug's Listeners collection by line terminator.
Itis an overloaded function and provides more interactivity to log the
traced error.

WriteLinelIf WriteLinelf Behave same as WriteLine method but makes proceeding based on a
condition.

403

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

Tip Some other methods of these classes are also there. You should also work with them while practicing.

You can use these functions to trace and print out the errors(log) and use Listener instance
(TraceListeners provided in C#) to log traced information to specific target.
Listing 15-4 shows how to use Debug class for tracing and basic logging:

Code Snippet

Listing 15-4. Debug class for tracing and logging

static void Main(string[] args)

{
try
{
Debug.WriteLine("Tracing Start");
int age = 10;
Debug.WritelineIf(age.GetType() == typeof(int), "Age is Valid");
for (int i = 0; 1 < 5; i++)
{
Debug.WritelLine("Loop executed Successfully");
}
Debug.Print("Tracing Finished");
}
catch (Exception)
Debug.Assert(false);
}
}

Debug class use Output window (Target Listener) of Visual Studio as Default trace listener.

You can also use Trace class for such a purpose. For example, we have two numbers and want to
evaluate that they must be int and the divisor should not be zero, if zero changes the value and provides the
information. Listing 15-5 explains this example.

Code snippet

Listing 15-5. Trace class to trace and log data

static void Main(string[] args)

{
try

{

Trace.Writeline("Tracing Start:Numbers must be Int");

int numi
int num2

10;
0;

404

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Trace.WritelLineIf(numl.GetType() == typeof(int) 88 num2.GetType() == typeof(int), "Numbers
are valid");

if (num2 < 1)

num2 = numi;

Trace.TraceInformation("num2 has been changed due to zero value");
}
int result = numi / num2;
Trace.Indent();

}

catch (Exception ex)

{
Trace.Assert(false);
Trace.TraceError(ex.Message);

}

TraceInformation provides the information about the error which occurred or which you want to
occur. The same code executes again without the if condition; the exception occurred due to the 0 value of
the divisor and the Assert method gives you the call stack of error in a message box. But if you want to record
such a traced error (to log your error), you would use the TraceError method in such a situation. It logs
down the call stack to the output window (default listener).

Note The Debug and Trace classes show their output in an output window (Visual Studio tool window) by
default.

Another class which comes in handy is TraceSource, and it’s more preferable to use than static Trace
class. Listing 15-6 shows how to trace and log issues in your application with TraceSource class:

Code Snippet

Listing 15-6. TraceSource class to trace and log data

TraceSource ts = new TraceSource("TraceSourcel”, Sourcelevels.All);
ts.TraceInformation("Tracing the application..");
ts.TraceEvent(TraceEventType.Error, 0, "Error trace Event");
ts.TraceData(TraceEventType.Information, 1, new string[]{ "Info1","Info2" });
ts.Flush();//flush the buffers

ts.Close();//close the listeners (in this case listener is outout window)

TraceSource class has some extra functions. Some of them, like TraceEvent and TraceData, are used
here. TraceEvent will write down the trace event message/error with the event type and numeric identifier
to the trace listener, whereas TraceData will write down traced data to the listener along with the event
type, event identifier, and trace data in an array form. The event type provided in TraceEvent and TraceData
method is enumeration: Critical, Error, Warning, Information, Verbose, Stop, Start, Suspend, Resume,
Transfer. TraceSource class has two overloaded constructors in which you can give the name of TraceSouce
or name along with SourceLevel (tracing to which level). It is also an enumeration: ActivityTracing, All,
Critical, Error, Information, Off, Verbose, Warning.

405

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

Trace or TraceSource class gives you more interactivity with the issues in an application when it is in
real use, as opposed to Debug class.

Note Trace class can be used in Release as well as in Debug Mode. It runs in a different thread, whereas
Debug runs in the main thread.

Working with Trace Listeners

Trace listeners receive the traced information or errors by Debug, Trace, or TraceSource class. They are used
to log the errors. They direct the traced data to a target such as EventLog, Console, Output window, or Text
file. Besides Output window (which is the default trace listener), there are several other trace listeners.

The .NET framework provides the following listeners:

1. ConsoleTraceListener
2. DelimitedTraceListener
3. EventLogTraceListener

4. TextWriterTraceListener
5. XmlWriterTraceListener

To work with such listeners, you must clear the default listener first. You can have as many listeners as
you want.
The detail and use of some of these trace listeners (to log the errors or issues) are below:

ConsoleTraceListener

This listener logs the errors or outputs them to a console screen (Target), which is standard output.
Listing 15-7 shows how to log errors on Console.

Code Snippet

Listing 15-7. Use of ConsoleTraceListener

//specify the trace source
TraceSource ts = new TraceSource("ConsoleTraceSource", Sourcelevels.All);

//Specify the listener (Console would be the Target)
ConsoleTracelistener listener = new ConsoleTracelistener();

//clear the default listener
ts.Listeners.Clear();

//adding the listener
ts.Listeners.Add(listener);

//tracing the information/issue which will log into added listener
ts.TraceInformation("Tracing the application..");
ts.TraceData(TraceEventType.Error, 1, new string[] { "Error1", "Error2" });
ts.Flush();

ts.Close();

406

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

TextWriterTraceListener

This listener logs the debugged or traced data into text files (target). You can also read traced data from the
file. Listing 15-8 shows how to use TextWriterTraceListener.

Code Snippet

Listing 15-8. Use of TextWriterTraceListener

//specify the trace source
TraceSource ts = new TraceSource("SampleTraceSource", Sourcelevels.All);

//Specify the target for TextWriterTracelistener
Stream file = new FileStream("TraceFile.txt", FileMode.Append);

//Specify the listener
TextWriterTracelistener txtListener = new TextWriterTracelistener(file);

//clear the default listener
ts.Listeners.Clear();

//adding the listener
ts.Listeners.Add(txtListener);

//tracing the information/issue which will log into added listener
ts.TraceInformation("Tracing the application..");
ts.TraceData(TraceEventType.Error, 1, new string[] { "Error1", "Error2" });
ts.TraceInformation("Tracing complete");

ts.Flush();

ts.Close();

The output of traced data is:

| TraceFile - Notepad - a x
File Edit Format View Help

tonsoleTraceSource Information: @ : Tracing the application..
ConsoleTraceSource Error: 1 : Errorl, Error2
ConsoleTraceSource Information: @ : Tracing complete

Figure 15-6. Output of Traced data in File

You can also specify the listeners in a configuration file, which is more beneficial than specifying in code
because you can easily change them after the deployment of an application.

407

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

The following configuration code shows how to specify the listeners in a configuration file:

<sources>
<source name="SampleTraceSource" switchName="defaultSwitch">
<listeners>
<add initializeData="TraceFile.txt" name="txtListener" type="System.Diagnostics.
TextWriterTracelListeer">
<filter type="System.Diagnostics.EventTypeFilter" initializeData="Error"/>
</add>
<add name="consolelListener" />
<remove name="Default"/>
</listeners>
</source>
</sources>
<switches>
<add name="defaultSwitch" value="All" />
</switches>

You can give the source of a trace listener inside the sources tag, where you specify the source of the
listener. This source can use two trace listeners: text and console.

The switch tag is also defined, which is used by the trace source; this is what we also did in our code
to specify the source label in the TraceSource constructor. Its value specifies how to deal with incoming
messages: “All” means all types of messages. You can specify which type of message can be viewed this
way. Switch works on the TraceSource level, so its impact will be on all the listeners defined under a trace
source. To specify the type of message you can see, or determine which event is processed for a specific
listener, you can apply a filter. This is commonly used in such cases where you have multiple listeners
under a trace source

Note Add the above code in the system.diagnostics tag and place it inside the configuration tag.

EventLogTraceListener

Event Log received the traced information and recorded information about the important events of an
application. This trace listener logged the traced or debugged data into the EventLogs of Windows (Target).
You can also read the EventLogs with the administrative permission, using the provided class EventLog.
EventLog is a class used to access EventLogs, which records information about the important event of
an application. You can read from existing logs, create new logs and write to them, or create and delete an
event source.
Listing 15-9 shows how you can write sample data into EventLog:

Code Snippet

Listing 15-9. Create Event source

string sourceName = "Sample Log";

string logName = "Application”;

string machineName = ".";// . means local machine

string entryTowritten = "Some random entry into Event Log";
if (!Eventlog.SourceExists(sourceName, machineName))

408

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

{

EventLog.CreateEventSource(sourceName, logName);

}
EventLog.WriteEntry(sourceName,entryTowritten, EventLogEntryType.Information);

CreateEventSource method is used to create the source of an event (creation of new EventLog) with the
provided name. Log name, which is an application, is optional. Log is a category or something similar to a file
in which source entries are to be written. There are three types of Logs: Application, System, or Custom log.

To write data or an entry into an EventLog, you use the WriteEntry method, in which you have to know
what to write, where to write, and what should be the level of data to be written.

To view the created log, open the Event Viewer by going to “Start” in Windows » search “Administrative
Tools” When the window is open, open the “Event Viewer” application.

On the left side (menu panel) of Event Viewer, there is a folder (“Windows Logs”), which contains all
the logs of type Application and System (log name which we specify in our code). The logs with a custom log
name go in the “Application and Services Logs” folder.

Click on the “Application” log as we specified in the log name “Application” in code. Search through all
logs with the given source name (the name given in the code, which is Sample Log). Click on it. It will look
like this:

kel
File Action View Help

= | 2m @im

(3] Event Viewer (Local) Application Number of events: 1
¢ Custom Views __ s
v [Windows Logs ol Date and Time Source EventID Task Category
[1] Application (1) information 3/11/2017 11:3415 PM Sample Lag 0 None
[&] Security

] Setup
[5] System
[] Forwarded Events

= Applications and Services Logs
4 Subscriptions

< >

Event 0, Sample Log x

General Details

Some random entry into Event Log

Log Mame: Application

Source: Sample Leg Logged: 31172017 11:3415 PM
Event ID: U Task Category: None

Level: Infermation Keywords: Classic

User /A Computer: ARREEZ-PC

OpCode:

More Information: Event Log Online Help

Figure 15-7. Event viewer

The marking on the above figure shows our information specified in code is in EventLog.
Whenever the code runs, a new entry is created with the specific message inside the given log.

409

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

You can also read the EventLog. For example, I need to read the latest information of Sample Log.
The following code helps you out:

string sourceName = "Sample Log";
string logName = "Application";
string machineName = ".";// . means local machine

EventLog log = new EventLog(logName,machineName,sourceName);
Console.WriteLine("Total entries: " + log.Entries.Count);

EventLogEntry last = log.Entries[log.Entries.Count - 1];//last(latest) log with "Sample Log"
name

Console.Writeline("Index: " + last.Index);
Console.WriteLine("Source: " + last.Source);
Console.WriteLine("Type: " + last.EntryType);
Console.WritelLine("Time: " + last.TimeWritten);
Console.WriteLine("Message: " + last.Message);
Console.WritelLine("Machine Name: " + last.MachineName);
Console.WriteLine("Category: " + last.Category);

When the tracing has to be logged, then we use EventLogTraceListener to log traced or debugged data
in the corresponding target (EventLog).
Listing 15-10 shows how you can write information to EventLog using this listener:

Code snippet

Listing 15-10. Use of EventLogTraceListener

string sourceName = "Sample Log";
string logName = "Application";
string machineName = ".";// . means local machine

//Creation of log
if (!Eventlog.SourceExists(sourceName, machineName))

EventLog.CreateEventSource(sourceName, logName);//EventlLog created

}

//Specifing created log (target)
EventLog log = new EventlLog();
log.Source = sourceName;
log.Log = logName;
log.MachineName = machineName;

//specify the Eventlog trace listener
EventLogTracelistener eventlLoglListener = new EventlogTracelListener();

//specify the target to listener
eventlLoglistener.Eventlog = log;

410

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

//specifing the Trace class
TraceSource trace = new TraceSource("Sample Source",SourcelLevels.Information);//just to
trace information

//Clearing default listener
trace.Listeners.Clear();

//assigning new listener
trace.Listeners.Add(eventLoglistener);

//Start tracing
trace.TraceInformation("Tracing start to Event Log");

trace.Flush();
trace.Close();

You can read this traced information as we did above: Code to Read Event Logs.

Note Visual Studio should start “Run as Administrator” in order to read Event Logs.

Profiling the Application

Profiling is an activity of collecting information about something in order to give a description or to
analyze it.

Profiling in an application is to gather information about it to analyze or study its performance or
health: the speed of an application, memory consumed, disk space usage or other performance-related
characteristics.

There are two main ways to do profiling of an application:

1. Profiling using Visual Studio Tool

2. Profiling by Hand

Profiling using Visual Studio Tool

Visual Studio 2012 and above of version Ultimate, Premium or Professional includes several profiling-
related tools like Memory Usage, CPU Usage, Performance Explorer, etc., which you can call Profilers. When
working with Profiler, the easiest way is to use Performance Wizard (profiling tool in Visual Studio).

To work with Performance Wizard, click on Analyze menu » select Launch Performance Wizard.
The wizard looks like:

411

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

Performance Wizard -- Page 1 of 3 2 IEN
EpENE

m Specify the profiling method

Prefiling your application czn help diagnese performance problems and identify the most common expensive
methods in your application. To begin, choose a profiling method from the options below.

What method of profiling would you ke to use?

(@) CPU pling (reco ded)
Moniter CPU-bound applications with low overnead

) Instrumentation
Measure function call counts and timing

) .NET memeory allocation (sampling)
Track managed memory allocation

() Resource contention data (concurrency)
Detect threads waiting for other threads

MNext > . Finish Cancel

Figure 15-8. Performance Wizard

There are four ways to do profiling using Performance Wizard:

1. CPU sampling: It is the most recommended method to do profiling and is used
for initial search for performance-related problems.

2. Instrumentation: As discussed earlier, instrumentation means to add code in
your program. Basically, you add some code to gather timing information for
each function called and examine it.

3. .NET memory allocation: This method gives you information when a new object
is created or destroyed by a garbage collector.

4. Resource contention data: This method is useful for a multithreaded
environment.

Select “CPU Sampling” and click “Next”. In the next window, click on “Finish”. After finishing the wizard,
Profiler will launch. This may take a couple of seconds to start.

Profiler will analyze the data shown in the respective panels. The most often used calls and method
paths are shown in those panels.

412

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Note Visual Studio should start “Run as Administrator”, as some of Profiler’s features require
administrative privilege.

Profiling by Hand

Profiling by Hand is instrumenting, i.e., inserting some code to watch the performance of an application.
Normally you work with StopWatch in this method and record a program’s execution time. You capture
timing information for every function that is called.

Listing 15-11 shows how to perform this:

Code snippet

Listing 15-11. Profiling by Hand

static void Main(string[] args)

{

Stopwatch watch = new Stopwatch();

//Time taken by LoadData method
watch.Start();

LoadData();

watch.Stop();

//Time Taken by FetchData method
Console.WriteLine("Time Taken by LoadData method:

+ watch.Elapsed);

//Reset watch
watch.Reset();

//Time taken by FetchData method
watch.Start();

var data = FetchData();
watch.Stop();

Console.WriteLine("Time taken by FetchData method: " + watch.Elapsed);

Console.WriteLine("Profiling by Hand is Done");
Console.ReadlLine();

}
static void LoadData()

{

for (int i = 0; i < 100; i++)
{
Debug.Write("Loading");

}

413

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

}
static int FetchData()
{
int data=0;
for (int i = 0; 1 < 10; i++)
{
for (int j = 0; j < 10; j++)
data = j;
}
}
return data;
}

The output of this code looks like:

Time Taken by LoadData method: ©0:00:88.1283933
Time taken by FetchData method: ©0:00:00.0002119
Profiling by Hand is Done

Figure 15-9. Output (Profiling by Hand)

StopWatch has different methods and you can get time in milliseconds also.

Profiling using Performance Counter

Performance Counter lets you monitor the performance of an application. You can track what the computer
is doing, i.e., the activity of the computer, CPU performance, etc. Keep an eye on the application or on the
hardware. It is also another approach of Profiling by Hand.

Displaying of CPU usage is an example of Performance Counter as it displays the activity of the CPU and
you can track down what is happing.

These performance counters are managed by Windows like EventLogs and you can view them by using
the Perfmon.exe program.

To view Performance Monitor, hit the “Run” command by pressing window key +R, type perfmon and
hit enter. This will bring Performance Monitor in front of you:

414

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

(%) Pedformance Monitor = O x

(%) File Action View Window Help mrr
|4 p | 2| B ow | H o2
I Beitinance PR~ EX SO0 M
~ L Monitoring Tools -
& Performance Monitor ;
» L34 Data Collector Sets %
» [Reports
m_
w.
?o_
w_
50-
w-
304
204
A A
104 \
JYL
\/L/‘ Y e
61259 PM GI1Z1TPM E13:21PM &13:31PM &13:40PM &13:50PM &1400PM G1410PM 61420 PM &14:37PM
Last 14454 Average 3414 Minimum 0378 Maximum 15473 Duration 1:40
| Show Color Scale Counter Instance Parent Object Computer
w % Pr ¢ Time Processor Information \ARREEZ-PC
| |

Figure 15-10. Performance Monitor

The figure shows the examining of data about CPU.

Creating the Performance Counter
There are two ways to create Performance Counter.
1. Using Server Explorer
2. Using Code

C# provides a class, PerformanceCounterCategory class, to create Performance Counter, and
PerformanceCounter to interact with them. You can also create manual performance counters using
Server-Explorer.

Listing 15-12 shows how to create Performance Counter in C#.

Code Snippet

Listing 15-12. Create Performance Counter

if (!PerformanceCounterCategory.Exists("ShoppingCounter"))

{

CounterCreationDataCollection counters = new CounterCreationDataCollection();

415

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

/* 1. counter for counting totals(ShoppingDone): PerformanceCounterType.NumberOfItems32 */
CounterCreationData totalDone = new CounterCreationData();
totalDone.CounterName = "ShoppingDone";
totalDone.CounterHelp = "Total number of Shoppings Done";
totalDone.CounterType = PerformanceCounterType.NumberOfItems32;
counters.Add(totalDone);

/* 2. counter for counting totals (ShoppingNotDone): PerformanceCounterType.NumberOfItems32
*/
CounterCreationData totalNotDone = new CounterCreationData();
totalNotDone.CounterName = "ShoppingNotDone";
totalNotDone.CounterHelp = "Total number of Shoppings not Done";
totalNotDone.CounterType = PerformanceCounterType.NumberOfItems32;
counters.Add(totalNotDone);

// create new category with the counters above
PerformanceCounterCategory.Create("ShoppingCounter”,

"Shopping counters help out to montior how many shoppings are done and how many are not.
, counters);

Console.WritelLine("Performance Counter Created.");

}

else
Console.WritelLine("Performance Counter already Created.");

PerformanceCounterCategory class is used to create the performance counters for a specific Category.
It takes a list of counters to create. It is also used to delete the performance counter or check the existence of
them.

Performance counters are defined for a specific category using CounterCreationData class.

CounterCreationDataCollection takes the instances of CounterCreationData class.

The above code will create Performance Category “ShoppingCounter” and add two counters,
“ShoppingDone” and “ShoppingNotDone’, into it.

You can view them by navigating to Server Explorer » Servers » Performance Counter and search
down for the created category.

[ShoppingDone
[ShoppingNotDone

Figure 15-11. Performance Counter Category

Right-click on the “ShoppingCounter” and click Edit. You can also add new counters in this way, or edit
or view them. The details look like:

416

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Performance Counter Builder ? X

Define a new category and the list of counters you want it to contain, or edit the values for an
existing category.
Category name:

[ShoppingCounter

Category description:
Shpping counters help out to montior how many shoppings are done and how many are
not.

Counter list builder
To add a new counter, click on the New button then specify the details.

Counters: Counter
ShoppingNotDone Name:
[Shcvppingoone
Type:
NumberOfitems32 i

Counter description:

Total number of operations executed

New Delete

OK Cancel

Figure 15-12. Performance Builder

The same detail we created is in our code, i.e., two performance counters with provided names and
descriptions, etc.

Working with Performance Counter

After creating Performance Counter, these should be used to monitor the performance of an application.
Listing 15-13 shows how you can use them in your application.

Code Snippet
Listing 15-13. Working with Performance Counter

// successfully Done shpping (Counter)

PerformanceCounter successfullCounter = new PerformanceCounter();
successfullCounter.CategoryName = "ShoppingCounter";
successfullCounter.CounterName = "ShoppingDone";

successfullCounter.MachineName = ".";
successfullCounter.ReadOnly = false;

417

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

// Not successfully Done shopping (Counter)

PerformanceCounter NotsuccessfullCounter = new PerformanceCounter();
NotsuccessfullCounter.CategoryName = "ShoppingCounter";
NotsuccessfullCounter.CounterName = "ShoppingsNotDone";

NotsuccessfullCounter.MachineName = ".";
NotsuccessfullCounter.ReadOnly = false;

int noOfShoppingsDone = 15;
int noOfShoppingsNotDone = 20;

for (int i = 0; i < noOfShoppingsDone; i++)

{
Console.WriteLine("Shopping Done Successfully..");
successfullCounter.Increment();

}

for (int i = 0; i < noOfShoppingsNotDone; i++)
{
Console.WriteLine("Shoppings Not Done..");
NotsuccessfullCounter.Increment();

}

Somewhere in your application, you make your counter successful and unsuccessful based on the logic
(i.e., where shopping would not be possible or be possible). To do so, you have to initialize your created
performance counters and use them with the provided functions:

1. Increment(): Increment the value of counter by 1.
IncrementBy(): Increment the value of counter with the provided value.

Decrement(): Decrement the value of counter by 1.

> e n

DecrementBy(): Decrement the value of counter with the provided value.

You can view your change or monitor these performance counters by going to Performance Monitor.

Open the application. Select Performance Monitor from the left menu side. Click the green color button of
plus (at top). A window of “Add Counters” will pop up in front of you. Search down your Counter Category »,
click on it, and hit the Add button. This will add the selected counter in the “Added Counter” panel of the same
window (you can add as many counters as you want to view). Click on the “OK” button:

418

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Add Counters X
Available counters Added counters
Select counters from computer:
Counter Parent Inst... Computer
| <Local computer> b Browse... .
% ShoppingCounter A
[ServiceModelService 3.0.0.0° v P =
ServiceModelService 4.0.0.0 v
\ShoppingCounter) v
SMB Client Shares v
SME Server v
SMB Server Sessions v
SMB Server Shares v
SMSvecHost 3.0.0.0 v v
Search
% Add >> Remove << I
[[]show description =

Figure 15-13. Add Counters

After clicking on the OK button, the selected counters’ performance is viewed in Performance Counter.
In such a way, you can monitor your application’s health.

Tip You can further study the Performance Counter from the following link: https://msdn.microsoft.
com/en-us/library/w8f5kw2e(v=vs.110).aspx

Summary

1. Debugging is the process of finding and removing bugs/errors from your
application.

2. Tracing is the process of tracing the errors or issues occurring in your
application.

3. Logging is the process to logging traced or debugged errors or issues. Logging is
the reporting of errors.

419

https://msdn.microsoft.com/en-us/library/w8f5kw2e(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/w8f5kw2e(v=vs.110).aspx

CHAPTER 15 DEBUGGING AND DIAGNOSTICS

4. Debug Mode is preferable for development purposes and Debugging is
performed in this mode to find or remove errors.

5. Release Mode is preferable for an application in the release environment and
tracing can be applied to trace/identify an error.

6. Profiling or instrumenting of an application means to insert some code to watch
the performance of an application.

7. Performance Counter lets you monitor the performance of an application. You
can track what the computer is doing, i.e., the activity of the computer, CPU
performance, etc. Keep an eye on the application or on the hardware.

Code Challenges

Challenge 1: Perform tracing and logging in your application.

Build an application of dividing two numbers. The divisor must be zero. Trace the code and log into
EventLog in an appropriate manner so that you can find out what, where, and which kind of data is traced
and logged.

Challenge 2: Implement Performance Counter in your application.

Make a console application, which should have 2 choices for the user: 1- Input, 2-Output. When the user
types 1 and presses enter, it should take the input (single input of any type) and count as 100 and so on.
When the user types 2 and presses enter, it should display the number of inputs the user has entered so far.
Implement Performance Counter to keep track of user inputs. Handle the code if the user mistakenly enters
any other type of input.

Hint Take the hint from the code written in the Performance Counter topic.

Practice Exam Questions

Question 1

Which class should you preferably use for tracing in Release Mode?
A) Debug
B) Trace
C) TraceSource

D) All of the above

420

CHAPTER 15 I DEBUGGING AND DIAGNOSTICS

Question 2

To build a project you need a PDB file of:
A) Previous build version
B) Any build version
C) Noneed of PDB file

D) Same build version

Question 3

Which method is the easiest way of finding the problem if you have no idea what it is?
A) Using Profiler
B) Profiling by Hand
C) Using Performance Counter

D) Debugging

Answers
1. C
2. D
3. A

421

CHAPTER 16

Practice Exam Questions

Microsoft conduct Exam 70-483: Programming in C# from 4 objectives.
1. Manage Program Flow
2. Create and Use Types
3. Debug Application and Implement Security
4. Implement Data Access

In the previous chapters, we covered all the topics included in the objectives. In this chapter, we'll revise
these objectives in terms of simple multiple-choice questions. Each objective contains 25 unique questions
for your practice and revision.

Objective 1: Manage Program Flow

Question 1

A method name LongRunningMethod(CancellationTokenSource cts), takes a cancellation token source and
performs a long-running task. If the calling code requests cancellation, the method must Cancel the long-
running task and set the task status to TaskStatus.Canceled.

Which of the following methods should you use?

A) throw new AggregateException();
B) ctThrowlfCancellationRequested() ;
C) cts.Cancel();

D) if(ct.IsCancellationRequested) return;

© Ali Asad and Hamza Ali 2017 423
A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9_16

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 2

An exception is handled on a method which mathematically calculates numbers. The method contains the

following

01.
02.
03.

04.
05.
06.
07.

catch blocks:

catch(ArithmeticException e) { Console.Writeline("Arithmetic Error"); }

catch (ArgumentException e) { Console.WritelLine("Invalid Error"); }

catch (Exception e) { Console.WriteLine("General Error"); }

You need to add the following code to the method:

catch (DivideByZeroException e) { Console.WritelLine("Divide by Zero"); }

At which line should you insert the code?

A) o1
B) 03
C) 05
D) o7
Question 3
To create a custom exception, which class is required to be inherited?
A) SystemException
B) System.Exception
C) System.Attribute
D) Enumerable
Question 4
How do you throw an exception so the stack trace preserves the information?
A) throw;
B) throw new Exception();
C) throwex;
D) return new Exception();

424

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 5

You're creating an application that contains the following code:

class Test
{
public event Action Launched;
}
class Program
{
static void Main(string[] args)
{
Test t = new Test();
}
}
How would you subscribe a Launched event in the Main method to the “t” instance?
A) t.Launched +=()=>{..};
B) t.Launched=()=>{.};
C) tLaunched-=()=>{..};
D) tLaunched =t.Launched + ()=>{...};
Question 6

You need to reference a method which returns a Boolean value and accepts two int parameters. Which of the
following delegates would you use?

A) Funccint, int, bool> func;
B) Actioncint, int, bool> act;
C) Func<bool, int, int> func;

D) Action<bool, int, int> act;

Question 7

Which of the following keywords is useful for ignoring the remaining code execution and quickly jumping to
the next iteration of the loop?

A) break;
B) yield;
C) jump;

D) continue;

425

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 8
Which of the following loops is faster?
A) for
B) do
C) Parallel.for
D) foreach
Question 9

await keyword can only be written with a method whose method signature has:
A) static keyword
B) asynckeyword
C) lock keyword
D) sealed keyword

Question 10

Which keyword is used to prevent a class from inheriting?

A) sealed
B) lock
C) const
D) static

Question 11

When handling an exception, which block is useful to release resources?

A) try

B) catch
C) finally
D) lock

Question 12
Which of following methods is accurate for holding the execution of a running task for a specific time?
A) Thread.Sleep()
B) Task.Delay()
C) Task.Wait()
D) Task.WaitAll()
426

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 13

Which of the following methods is useful for holding the execution of a main thread until all background
tasks are executing?

A) Thread.Sleep()
B) Task.WaitAll()
C) Task.Wait()

D) Thread.Join()

Question 14

How would you chain the execution of a task so that every next task runs when the previous task finishes its
execution? Which method you would use?

A) task.ContinueWith()
B) Task.Wait()

C) Task.Run()

D) Thread.Join()

Question 15

In a switch statement, which keyword would you use to write a code when no case value satisfies?

A) else

B) default
C) return
D) yield

Question 16

Foreach loop can only run on:
A) anything
B) collection
C) constvalues

D) static values

Question 17

Which keyword is useful for returning a single value from a method to the calling code?

A) yield
B) return
C) break

D) continue
427

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 18

Which of the following collections is a thread-safe?
A) Dictionary<KV>
B) Stack<T>
C) ConcurrentDictionary<KV>

D) Queue

Question 19

When running a long-running asynchronous operation that returns a value, which keyword is used to wait
and get the result?

A) await
B) yield
C) return
D) async
Question 20

Which of the following is the right syntax for using an asynchronous lambda expression?
A) Tasktask=async()=>{...};
B) Task<Task>task=async()=>1{...};
C) Func<Task>task=async () =>{... };

D) Action<Task> task =async (t) =>{... };

Question 21

Suppose you're developing an application and you want to make a thread-safe code block for execution.
Which of the following code blocks would you use to write code?

A)
object o = new object();
lock (o)
{

}
B)
object o = new object();
lock (typeof(o))
{

428

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

)
lock (new object ())
{

Question 22

Suppose you're creating a method that threw a new exception but it also threw an inner exception. See the
following code:

01. private void myMethod(int i)

02. {

03. try

04. {

05.

06. }

07. catch (ArgumentException ex)
08.

09.

10. }

11. }

You must preserve the stack trace of the new exception and also throw the inner exception; which code
statement would you use in line 09?

A) throw ex;
B) throw new Exception("Unexpected Error", ex);
C) throw;

D) throw new Exception(ex);

Question 23

You're creating an application that has many threads that run in parallel. You need to increment an integer

variable “i". How would you increment it in an atomic operation?
A)

int i = 0;

Interlocked.Increment(ref i);
B)

int 1 = 0;

Interlocked.Increment(i);

429

CHAPTER 16 = PRACTICE EXAM QUESTIONS

9)
int 1 = 0;
i+4;
D)
int 1 = 0;
Interlocked.Increment(out i);
Question 24
Which property or method of task can be used as an alternative of the await keyword?
A) Result
B) Wait()
C) WaitAll()
D) Delay()
Question 25

Suppose you're creating an application that needs a delegate that can hold a reference of a method that can
return bool and accept an integer parameter. How would you define that delegate?

A) delegate bool myDelegate(int i, int j);
B) delegate bool (inti, int j);
C) delegate myDelegate(inti, int j);

D) delegate bool myDelegate(int i);

Answers
1.

© © N o g 2w DN

o = 8
L R R T

—
w

430

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

e o~ B N G TN N -~ B o~ B -~ R

Objective 2: Create and Use Types

Question 1

Suppose you're creating an application; in the application you need to create a method that can be called by
using a varying number of parameters. What should you use?

A
B)
0)
D)

derived classes
interface
enumeration

method overloading

Question 2

You are d
inte
{
inte
{
}

eveloping an application that includes the following code segment:
rface ILion

void Run();

rface IMan

void Run();

431

CHAPTER 16 = PRACTICE EXAM QUESTIONS

You need to implement both Run() methods in a derived class named Animal that uses the Run()
method of each interface.
Which two code segments should you use?

A)
var animal = new Animal();
((ILion, IMan)animal).Run();

B)
class Animal : ILion, IMan

{
public void IMan.Run()

{
}

public void ILion.Run()
{

}

9)
class Animal : ILion, IMan

{

void IMan.Run()
{

}

void ILion.Run()

{
}

D)
var animal = new Animal();
((ILion)animal).Run();
((IMan)animal).Run();

E)
var animal = new Animal();
animal.Run(ILion);
animal.Run(IMan);

F)
var animal = new Animal();
animal.Run();

432

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 3

You're creating an application that receives a JSON data in the following format:

{

"Name" : "Ali",

"Age" : "22",

"Languages": ["Urdu", "English"]
}

The application includes the following code segment:

01. public class Person

02. {

03. public string Name { get; set; }

04. public int Age { get; set; }

05. public string[] Languages { get; set; }

06. }

07. public static Person ConvertToPerson(string json)
08. {

09. var ser = new JavaScriptSerializer();

10.

11. }

You need to ensure that the ConvertToName() method returns the JSON input string as a Name object.
Which code segment should you insert at line 10?

A) Return ser.ConvertToType<Person>(json);
B) Return ser.DeserializeObject(json);
C) Return ser.Deserialize<Person>(json);

D) Return (Person)ser.Serialize(json);

Question 4

You are developing an application. The application converts a Person object to a string by using a
method named WriteObject. The WriteObject() method accepts two parameters: a Person object and an
XmlObjectSerializer object.

The application includes the following code:

01. public enum Gender

02. {

03. Male,
04. Female,
05. Others
06. }

07. [DataContract]

08. public class Person
09. {

10. [DataMember]

433

CHAPTER 16 = PRACTICE EXAM QUESTIONS

11. public string Name { get; set; }

12. [DataMember]

13. public Gender Gender { get; set; }
14. }

15. void Demo()

16. {

17. var person = new Person { Name = "Ali", Gender = Gender.Male };
18. Console.WritelLine(WriteObject(person,
19.

20.))s

21. }

You need to serialize the Person object as a JSON object. Which code segment should you insert at line 19?
A) new DataContractSerializer(typeof(Person))
B) new XmlSerializer(typeof(Person))
C) new NetDataContractSenalizer()

D) new DataContractJsonSerializer(typeof(Person))

Question 5

Suppose you are developing an application that uses the following C# code:

01. public interface IPerson

02. {

03. string Name { get; set; }
04. }

05.

06. void Demo(object obj)

07. {

08.

09. if(person != null)

10. {

11. System.Console.Writeline(person.Name);
12. }

13. }

The Demo() method must not throw any exceptions when converting the obj object to the IPerson
interface or when accessing the Data property. You need to meet the requirements. Which code segment
should you insert at line 08?

A) var person = (IPerson)obj;
B) dynamic person = obj;
C) var person = obj is IPerson;

D) var person = obj as IPerson;

434

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 6

Suppose you are creating an application that manages the information of persons. The application includes
a class named Person and a method named Save. The Save() method must be strongly typed. It must allow
only types inherited from the Person class that use a constructor that accepts no parameters.

You need to implement the Save() method. Which code segment should you use?

A)
public static void Save<T>(T target) where T: new(), Person

{
}
B)

public static void Save<T>(T target) where T: Person

{
}

9)
public static void Save<T>(T target) where T: Person, new()

{
}

D)
public static void Save(Person person)

{
}

Question 7

Suppose you are developing an application that includes classes named Car and Vehicle and an interface
named IVehicle. The Car class must meet the following requirements:

It must either inherit from the Vehicle class or implement the IVehicle interface. It must be inheritable
by other classes in the application. You need to ensure that the Car class meets the requirements.

Which two code segments can you use to achieve this goal?

A)
sealed class Car : Vehicle

{

}
B)

abstract class Car: Vehicle

{
}

435

CHAPTER 16 = PRACTICE EXAM QUESTIONS

C)
sealed class Car : IVehicle

{

}

D)
abstract class Car : IVehicle

{
}

Question 8

Suppose you're creating an application that concatenates “1” value with a string for a million times. Which
of the following codes would you use that minimize the completion time and concatenates the string for the
millionth time?

A)
string str = "";
for (int i = 0; 1 < 1000000; i++)

{
}

return str;

str = string.Concat(str, "1");

B)
var str = new StringBuilder();
for (int i = 0; i < 1000000; i++)
{
str.Append("1");

return str.ToString();

9)
var str = null;
for (int i = 0; 1 < 1000000; i++)

{
}

return str.ToString();

str = str + "1";

D)
var str = null;
for (int i = 0; i < 1000000; i++)

{
}

return str.ToString();

str += "1";

436

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 9

You are creating a class named Person. The class has a string property named FirstName.
01. class Person

02. {

03. public string FirstName

04. {

05. get;

06. set;

07. }
08. }

The FirstName property value must be accessed and modified only by code within the Person class or
within a class derived from the Person class.
Which two actions should you perform?

A) Replace line 05 with the protected get;

B) Replace line 06 with the private set;

C) Replace line 03 with the public string EmployeeType

D) Replace line 05 with the private get;

E) Replace line 03 with the protected string EmployeeType

F) Replace line 06 with the protected set;

Question 10

How would you convert the following values?
01. float ft;

02. object o = ft;

03.
04. Console.Writeline(i);

You need to ensure that the application does not throw exceptions on invalid conversions. Which code
segment should you insert at line 03?

A) inti= (int)(float)o;
B) inti=(int)o;
C) inti=o;

D) inti=(int)(double)o;

437

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 11

You need to convert a date value entered in string format and you need to parse it into DateTime and convert
it to Coordinated Universal Time (UTC). The code must not cause an exception to be thrown. Which code
segment should you use?

A)
string strDate = "";
bool ValidDate = DateTime.TryParse(strDate,
CultureInfo.CurrentCulture,
DateTimeStyles.AdjustToUniversal | DateTimeStyles.Assumelocal,

out ValidatedDate);
B)

string strDate 5
bool ValidDate = DateTime.TryParse(strDate,
CultureInfo.CurrentCulture,
DateTimeStyles.Assumelocal,
out ValidatedDate);

C)
bool validDate = true;
try
{

}

catch

{

ValidatedDate = DateTime.Parse(strDate);

validDate = false;

}
D)

ValidatedDate = DateTime.ParseExact(strDate, "g",
CultureInfo.CurrentCulture,
DateTimeStyles.AdjustToUniversal
| DateTimeStyles.AdjustToUniversal);

Question 12

Suppose you are developing an application that includes an object that performs a long-running process.
You need to ensure that the garbage collector does not release the object’s resources until the process
completes.

Which garbage collector method should you use?

A) WaitForFullGCComplete()
B) WaitForFullGCApproach()
C) KeepAlive()

D) WaitForPendingFinalizers()

438

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 13

How would you ensure that the class library assembly is strongly named? What should you do?
A) Use the gacutil.exe command-line tool.
B) Use the xsd.exe command-line tool.
C) Use the aspnet_regiis.exe command-line tool.

D) Use assembly attributes.

Question 14

You are developing an application that includes the following code segment:

01. class A { }
02. class B : A { }

03. class C

04. {

05. void Demo(object obj) { Console.WriteLine("Demo(obj)");}
06. void Demo(C c) { Console.WriteLine("Demo(C)");}
07. void Demo(A a) { Console.WriteLine("Demo(A)");}
08. void Demo(B b) { Console.WriteLine("Demo(B)");}
09.

10. void Start()

11. {

12. object o = new B();

13. Demo(0);

14. }

15. }

You need to ensure that the Demo(B b) method runs. With which code segment should you replace
line 13?

A) Demo((B)o);

B) Demo(new B(0));
C) Demo(oisB);

D) Demo((A)o);

Question 15

How would you make sure the garbage collector does not release the object’s resources until the process
completes? Which garbage collector method should you use?

A) WaitForFullGCComplete()
B) SuppressFinalize()
C) collect()

D) RemoveMemoryPressure()

439

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 16
Which of the following methods of assembly is used to get all types?
A) GetTypes()
B) GetType()
C) ToTypeList()
D) Types()

Question 17

Which of the following keywords is used for a dynamic variable?

A) var

B) dynamic
C) const

D) static

Question 18

What should you use to encapsulate an array object?

A) Indexer
B) Property
C) Event

D) Private array

Question 19

How should you create an extension method of an integer?

A)
static class ExtensionClass
{
public static void ExtensionMethod(this int i)
{
//do code
}
}
B)
static class ExtensionClass
{
public static void ExtensionMethod(int i)
{
//do code
}
}

440

CHAPTER 16

C)
class ExtensionClass

{

public static void ExtensionMethod(this int i)

{
//do code

}
D)
static class ExtensionClass

{

public void ExtensionMethod(this int i)

{
//do code

Question 20
Which keyword is used to check or compare one type to another?
A) as
B) is
C) out
D) in

Question 21

PRACTICE EXAM QUESTIONS

How would you parse a type to another in a way that it doesn’t generate an exception in a wrong conversion?

A) as
B) is
C) out
D) in

Question 22

Which of the following interfaces is necessary to implement for creating a custom collection in C#?

A) TUnkown

B) IEnumerable
C) IComparable
D) IDisposable

441

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 23
Which of the following interfaces is used to manage an unmanaged resource?
A) IUnkown
B) IEnumerable
C) IComparable
D) IDisposable

Question 24

Which class is necessary to inherit while creating a custom attribute?
A) Exception
B) Attribute
C) Serializable

D) IEnumerable

Question 25
Which statement is used to remove the unnecessary resources automatically?
A) using
B) switch
C) Uncheck
D) Check
Answers
1. D
2. BD
3. C
4. D
5 D
6. C
7. B,D
8 B
9. B,E
10. A
11. A

442

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

> W g W o m o > T o @ o> O 0O

Objective 3: Debug Application and Implement Security

Question 1

You need to create a unique identity for your application assembly. Which two attributes should you include
for this purpose?

A) AssemblyTitleAttribute

B) AssemblyCultureAttribute
C) AssemblyVersionAttribute
D) AssemblyKeyNameAttribute

E) AssemblyFileVersion

Question 2

You are working on an application where you need to encrypt highly sensitive data. Which algorithm should
you use?

A) DES
B) Aes
C) TripleDES
D) RC2

443

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 3

You are required to develop a method which can be called by a varying number of parameters. The method
is called:

A) Method Overriding
B) Method Overloading
C) Abstract Method

D) Virtual Method

Question 4

You are required to create a class “Load” with the following requirements:
Include a member that represents the rate of a Loan instance.
Allow an external code to assign a value to a rate member.
Restrict the range of values that can be assigned to the rate member.
To meet these requirements, how would you implement the rate member?

A) public static property
B) public property

C) public static field

D) protected field

Question 5

You are creating a library (.dll file) for your project. You need to make it a strongly typed assembly. What
should you do?

A) use the csc.exe/target:Library option when building the application
B) usethe AL.exe command line-tool
C) use the aspnet_regiis.exe command line-tool

D) usethe EdmGen.exe command line-tool

Question 6

You are required to create a program with the following requirements:
In Debug Mode, console output must display Entering Release Mode.
In Release Mode, console output must display Entering Debug Mode.
Which code segment should you use?

A) if DEBUG.DEFINED
Console.WriteLine(“Entering Release Mode”);
else
Console.WriteLine(“Entering Debug Mode”);

444

B)

9)

D)

CHAPTER 16

if RELEASE.DEFINED
Console.WriteLine(“Entering Debug Mode”);
else

Console.WriteLine(“Entering Release Mode”);

#if DEBUG

Console.WriteLine(“Entering Release Mode”);
#elif RELEASE

Console.WriteLine(“Entering Debug Mode”);

#if DEBUG

Console.WriteLine(“Entering Debug Mode”);
#elif RELEASE

Console.WriteLine(“Entering Release Mode”);

Question 7

PRACTICE EXAM QUESTIONS

You are required to create an event source named mySource and a custom log named myLog on the server.
You need to write the “Hello” information event to the custom log.

A)

B)

9

D)

Which code segment should you use?

EventLog Log=new EventlLog(){Source="mySource”};
Log.WriteEntry(“Hello”,EventLogEntryType.Information);

EventlLog Log=new Eventlog(){Source="mylLog”};
Log.WriteEntry(“Hello”,EventLogEntryType.Information);

EventLog Log=new EventlLog(){Source="System”};
Log.WriteEntry(“Hello”,EventLogEntryType.Information);

EventLog Log=new EventlLog(){Source="Application”};
Log.WriteEntry(“Hello”,EventLogEntryType.Information);

Question 8

You have to class ExceptionLogger and its method LogExecption, which logs the exception. You need to log
all exceptions that occur and rethrow the original, including the entire exception stack.

A)

B)

Which code segment should you use for the above requirements?
Catch(Exception ex)

ExceptionLogger.LogException(ex);
throw;

}

Catch(Exception ex)

ExceptionlLogger.LogException(ex);
throw ex;

}

445

CHAPTER 16 = PRACTICE EXAM QUESTIONS

C) Catch(Exception)

ExceptionlLogger.LogException();
throw;

D) Catch(Exception)

ExceptionLogger.LogException(ex);
throw ex;

}

Question 9

You have the following code snippet:

If(! PerformanceCounterCategory.Exists(“CounterExample”))

{

Var counters=new CounterCreationDataCollection();
Var counteril=new CounterCreationData

{

CounterName="Counter1”,
CounterType=PerformanceCounterType.SampleFraction

)

Var counter2=new CounterCreationData

{

CounterName="Counter2”

};

Counters.Add(counter1);
Counters.Add(counter2);

» N

PerformanceCounterCategory.Create(“CounterExample”,””,PerformanceCounterCategoryType.
MultiInstance,counters);

You need to ensure that counterl is available for performance monitor. Which code segment should

}

you use?
A
B)
C)
D)

446

CounterType=PerformanceCounterType.RawBase
CounterType=PerformanceCounterType.AverageBase
CounterType=PerformanceCounterType.SampleBase

CounterType=PerformanceCounterType.CounterMultiBase

CHAPTER 16

Question 10

You are required to install an assembly in GAC. Which action should you take?
A) Use the Assembly Registration tool (regasm.exe)
B) Use the strong name tool (sn.exe)
C) User Microsoft register server (regsvr32.exe)
D) Use the Global Assembly Cache tool (gacutil.exe)
E) Use Windows installer 2.0

Question 11

PRACTICE EXAM QUESTIONS

You need to validate a string which has numbers in 333-456 format. Which pattern should you choose?

A @"\d\d-\d\d"

B) @"\n{3}-\n{3}"
C) @"[0-9]+-[0-9]"
D) @"\d{3}-\d{3}"

Question 12

How would you throw an exception to preserve stack-trace information?
A) throw;
B) throw new Exception();
C) throwe;

D) return new Exception();

Question 13

The application needs to encrypt highly sensitive data. Which algorithm should you use?

A) DES
B) Aes
C) TripleDES
D) RC2

447

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 14

You are developing an application which transmits a large amount of data. You need to ensure the data
integrity. Which algorithm should you use?

A) RSA

B) HMACSHA256

C) Aes

D) RNGCryptoServiceProvider

Question 15

Salt Hashing is done by:
A) Merging data with a random value and performing Cryptography
B) Merging data with a random value and performing Cryptanalysis
C) Merging data with a random value and performing Encryption

D) Merging data with a random value and performing Hashing

Question 16

Which of the following commands is required to create a strong name key?
A) sn-k{assembly_name}.snk
B) snk{assembly_name}.snk
C) gacutil -i {assembly_name}.snk

D) gacutili{assembly_name}.snk

Question 17

Which of the following methods is used for getting the information of a current assembly?
A) Assembly. GetExecutingAssembly();
B) Assembly.GetExecutedAssembly();
C) Assembly.GetCurrentAssembly();

D) Assembly.ExecutingAssembly();

Question 18
Which bindingflags are useful for getting the private data instance?
A) BindingFlags.NonPublic | BindingFlags.Instance
B) BindingFlags.Private | BindingFlags.Instance
C) BindingFlags.NonPrivate | BindingFlags.NonStatic
D) BindingFlags.Private | BindingFlags.NonStatic
448

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 19

Which class should preferably be used for tracing in Release Mode?
A) Debug
B) Trace
C) TraceSource

D) All of the above

Question 20

To build a project you need a PDB file of:
A) Previous build version
B) Any build version
C) Current Solution File

D) Same build version

Question 21

Which method is easiest to find the problem if you have no idea what it is?
A) Using Profiler
B) Profiling by Hand
C) Using Performance Counter

D) Debugging

Question 22

You need to validate an XML file. What would you use?
A) XSD
B) RegEx
C) StringBuilder

D) JavaScriptSerializer

Question 23
You need to send your data to a receiver and want no one to tamper with your data. What would you use?
A) X509Certificate2.SignHash
B) RSACryptoServiceProvider.Enrypt
C) UnicodeEncoding.GetBytes
D) Marshal.ZeroFreeBSTR
449

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 24

You are developing an assembly that will be used by server applications. You want to make the update
process of this assembly as smooth as possible. What steps would you take?

A) Create WinMD Assembly
B) Deploy Assembly to GAC
C) Sign the assembly with the storing name

D) Delay sign the assembly

Question 25

You want to configure your application to output more trace data. What would you use for the configuration
setting?

A) Listener

B) Filter

C) Switch

D) Trace
Answers

1. B,C

2. B

3.

4,

5.

6.

7.

8.

9.

> &5 B8 383
> r O ®m W > OO0 ®> > 0 ® W ®
e

—
N

450

Objective 4: Implement Data Access

18.
19.
20.
21.
22.
23.
24,
25.

g o »

O w > = >

@)

Question 1

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Suppose you are developing an application that includes the following code:

List<int> list = new List<int>

{

};

A)

B)

9

D)

80,
75,
60,
55,
75

You have to retrieve all the numbers that are greater than 60 from a list. Which code should you use?

var result

var result

var result

var result

from i in list
where i > 60
select i;

list.Take(60);

list.First(i => i > 80);

list.Any(i => i > 80);

451

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 2

Suppose you're developing an application that needs to read the data from a file and then release the file
resources. Which code snippet should you use?

A)
string data;
using (StreamReader readfile = new StreamReader("data.txt"))

while ((data = readfile.ReadLine()) != null)
{

}

Console.WritelLine(data);

}
B)
string data;
StreamReader readfile = null;
using (readfile = new StreamReader("data.txt"))

while ((data = readfile.ReadLine()) != null)
{

}

Console.WritelLine(data);

}
9)
string data;
StreamReader readfile = new StreamReader("data.txt");
while ((data = readfile.ReadLine()) != null)

{
}

Console.Writeline(data);

D)
string data;
StreamReader readfile = null;
try
{
readfile = new StreamReader("data.txt");
while ((data = readfile.ReadLine()) != null)

{

}
readfile.Close();
readfile.Dispose();

Console.WritelLine(data);

}
finally
{

}

452

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 3

Suppose you have a List<Person> people = new List<Person>(); You need to create an extension method that
will return the correct number of Person objects from the people list that can be displayed on each page and
each page has a uniform page size. Which code snippet should you use?

A)
Public static IEnumerable<int> Page(IEnumerable<int> source, int page, int pagesize)
{
return source.Take((pagesize - 1) * page).Skip(pagesize);
}
B)
Public static IEnumerable<T> Page(this IEnumerable<T> source, int page, int pagesize)
{
return source.Skip((page - 1) * pagesize).Take(pagesize);
}
9)
static IEnumerable<int> Page(IEnumerable<int> source, int page, int pagesize)
{
return source.Skip((pagesize - 1) * page).Take(pagesize);
}
D)
Public static IEnumerable<T> Page(this IEnumerable<T> source, int page, int pagesize)
{
return source.Take((page - 1) * pagesize).Skip(pagesize);
}
Question 4

Suppose you're creating an application that includes the following code, which retrieves JSON data. You
need to ensure that the code validates the JSON.

01. bool ValidateJSON(string json, Dictionary<string,object> result)

02. {
03.

04. try
05. {

06. result = serializer.Deserializer<Dictionary<string, object>>(json);
07. return true;

08. }

09. catch

10. {

11. return false;
12. }

13. }

453

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Which code should you insert at line 03?
A) var serializer = new DataContractSerializer();
B) DataContractSerializer serializer = new DataContractSerializer();
C) var serializer = new XmlSerializer();

D) var serializer = new JavaScriptSerializer();

Question 5

Suppose you have a collection of integer values. You define an integer variable named IntegerToRemove and

assign a value to it. You declare an array named filteredIntegers. You must to do the following things.
Remove duplicate integers from the integer array. Sort the array in order from the highest value to the

lowest value. Remove the integer value stored in the integerToRemove variable from the integers array.
Which LINQ query would you need to create to meet the requirements?

A)
int[] filteredIntegers = integers.Where(value => value !=
integerToRemove).OrderBy(x => x).ToArray();
B)
int[] filteredIntegers = integers.Where(value => value !=
integerToRemove).0rderByDescending(x => x).ToArray();
9)
int[] filteredIntegers = integers.Distinct().Where(value => value !=
integerToRemove).0rderByDescending(x => x).ToArray();
D)
int[] filteredIntegers = integers.Distinct()
.OrderByDescending(x => x).ToArray();
Question 6

An application has the following code:

01. class Person

02. {

03. public string Name { get; set; }

04. public int Age { get; set; }

05. }

06. static IEnumerable<Person> GetPersons(string sqlConnectionString)

07. {

08. var people = new List<Person>();

09. SqlConnection sqlConnection = new SqlConnection(sqlConnectionString);
10. using (sglConnection)

454

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

}

The GetPersons() method must meet the following requirements:

1.
2.

{
SqlCommand sqlCommand = new SqlCommand("Select Name, Age From
Persons", sqlConnection);
using (SqlDataReader sqlDataReader
{
Person person = new Person();
person.Name = (string)sqlDataReader["Name"];
person.Age = (int)sqlDataReader["Age"];
people.Add(person);
}
}
}

return people;

Connect to a Microsoft SQL Server database.

Create Animal objects and populate them with data from the database.

Which two actions should you perform?

A)

B)

C)

D)

E)

Insert the following code segment at line 17:
while(sqlDataReader.NextResult())
Insert the following code segment at line 14:
sqlConnection.Open();

Insert the following code segment at line 14:
sqlConnection.BeginTransaction();
Insert the following code segment at line 17:

while(sqlDataReader.Read())

Insert the following code segment at line 17:

while(sqlDataReader.GetValues())

sqlCommand.ExecuteReader())

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

455

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 7
You're using ADO.NET Entity Framework to retrieve data from a database in MS SQL Server. Suppose you
have the following code snippet:

01. public DataTime? OrderDate;
02. IQueryable<Order> GetOrderByYear(int year)
03. {
04. using (var context = new NortwindEntities())
05. {
06. var orders = from order in context.Orders;
07.
08. select order;
09. return orders.Tolist().AsQueryable();
10. }
11. }

You need to ensure the following requirements:

1. Return only orders that have an OrderDate value other than null.

2. Return only orders that were placed in the year specified in the OrderDate
property or in a later year.

Which code segment should you insert at line 07?
A) Where order.OrderDate Value != null && order.OrderDate Value Year > = year
B) Where order.OrderDateValue = = null && order.OrderDateValue.Year = = year
C) Where order.OrderDate.HasValue && order.OrderDate ValueYear = = year

D) Where order.OrderDateValueYear = = year

Question 8

Suppose you're writing a method named ReadFile that reads data from a file. You must ensure that the
ReadFile method meets the following requirements:

1. It must not make changes to the data file.

2. Ttmust allow other processes to access the data file. It must not throw an
exception if the application attempts to open a data file that does not exist.

Which code segment should you use?

A) var fs = File.Open(Filename, FileMode.OpenOrCreate, FileAccess.Read,
FileShare.ReadWrite);

B) var fs = File.Open(Filename, FileMode.Open, FileAccess.Read, FileShare.
ReadWrite);

C) var fs = File.Open(Filename, FileMode.OpenOrCreate, FileAccess.Read,
FileShare.Write);

D) varfs = File.ReadAllLines(Filename);
E) var fs = File.ReadAllBytes(Filename);

456

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 9

You're creating an application that converts data into multiple output formats; it includes the following code

snippets.

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.

class TabDelimitedFormatter : IFormatter<string>

readonly Func<int, char> suffix =

col => col %2 ==072 '\n' : "\t';
public string Output(IEnumerator<string> iterator, int size)
{
}

interface IFormatter<T>

string Output(IEnumerator<T> iterator, int size);

You need to minimize the completion time of the GetOutput() method. Which code segment should

you insert at line 07?

A)

B)

9

D)

string output = null;
for(int i = 1; iterator.MoveNext(); i++)

{
}

output = string.Concat(output, iterator.Current, suffix(i));

var output = new StringBuilder();
for(int i = 1; iterator.MoveNext(); i++)

{

output.Append(iterator.Current);
output.Append(suffix(i));
}

string output = null;
for(int i = 1; iterator.MoveNext(); i++)

{
}

output = output + iterator.Current + suffix(i);

string output = null;
for(int i = 1; iterator.MoveNext(); i++)

{
}

output += iterator.Current + suffix(i);

457

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 10

You are developing a class named Person. See the following code snippet:

01. class People

02. |

03. Dictionary<string, int> people = new Dictionary<string, int>();
04. public void Add(string name, int age)

05. {

06. people.Add(name, age);

07. }

08.

09. }

It has the following unit test:
public void UnitTest1()

{
People people = new People();
people.Add("Ali", 22);
people.Add("Sundus", 21);
int expectedAge = 21;
int actualAge = people["Sundus"];
Assert.AreEqual(expectedAge, actualAge);
}
You need to ensure the unit test will pass. What code snippet you should insert at line 08?
A)
public Dictionary<string, int> People
{
get { return people; }
}
B)
public int this[string name]
{
get
{
return people[name];
}
}
9
public Dictionary<string, int> People = new Dictionary<string, int>();
D)
public int salary(string name)
{
return people[name];
}

458

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 11

You are creating an application that uses a class named Person. The class is decorated with the
DataContractAttribute attribute. The application includes the following code snippet:

01. MemoryStream WritePerson(Person person)

02. |

03. var ms = new MemoryStream();

04. var binary = XmlDictionaryWriter.CreateBinary(ms);
05. var ser = new DataContractSerializer(typeof(Person));
06. ser.WriteObject(binary, person);

07.

08. return ms;

09. }

You need to ensure that the entire Person object is serialized to the memory stream object. Which code
segment should you insert at line 07?

A) binary.WriteEndDocument();

B) binary.WriteEndDocumentAsync();
C) binary.WriteEndElementAsync();
D) binary.Flush();

Question 12

You need to choose a collection type which internally stores a key and a value for each collection item,
provides objects to iterators in ascending order based on the key, and ensures that items are accessible by a
zero-based index or by key. Which collection type should you use?

A) SortedList
B) Queue

C) Array

D) HashTable

Question 13

You need to store the values in a collection. The values must be stored in the order that they were added to
the collection. The values must be accessed in a first-in, first-out order.
Which type of collection should you use?

A) SortedList
B) Queue

C) ArrayList
D) Hashtable

459

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 14

You are creating an application that will parse a large amount of text. You need to parse the text into separate
lines and minimize memory use while processing data. Which object type should you use?

A) DataContractSerializer
B) StringBuilder
C) StringReader

D) JsonSerializer

Question 15

Which of the following two interfaces should you use to iterate over a collection and release the unmanaged
resources.

A) IEquatable
B) IEnumerable
C) IDisposable
D) IComparable

Question 16

You have a List object that is generated by executing the following code:
List<string> subjects = new List<string>()

"English","Computer","Maths", "Physics"

};
You have a method that contains the following code:
01. bool GetSameSubjs(List<string> subj, string searchSubj)
02. {
03. var findSubj = subj.Exists((delegate (string subjName)
04. {
05. return subjName.Equals(searchSubj);
06. }
07.));
08. return findSubj;
09. }

You need to alter the method to use alambda statement. How should you rewrite lines 03 through 06 of
the method?

A) var findSubj = subj.First(x => x == searchSubj);

B) var findSubj = subj.Where(x => x == searchSubj);

C) var findSubj = subj.Exists(x => x.Equals(searchSubj));

D) var findSubj = subj.Where(x => x.Equals(searchSubj));
460

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

Question 17

You're creating an application that counts the number of times a specific word appears in a text file. See the
following code snippet:

01. class Demo

02. |

03. ConcurrentDictionary<string, int> words =

04. new ConcurrentDictionary<string, int>();

05. public Action<DirectoryInfo> ProcessDir()

06. {

07. Action<DirectoryInfo> act = (dirInfo =>

08. {

09. var files = dirInfo.GetFiles("*.cs").AsParallel<FileInfo>();
10. files.ForAll<FileInfo>(

11. fileinfo =>

12. {

13. var content = File.ReadAllText(fileinfo.FullName);
14. var sb = new StringBuilder();

15. foreach (var item in content)

16. {

17. sb.Append(char.IsLetter(item) ?

18. item.ToString().ToLowerInvariant() : " ");
19. }

20. var wordlist= sb.ToString().Split(new[] { ' ' },
21. StringSplitOptions.RemoveEmptyEntries);

22. foreach (var word in wordlist)

23. {

24.

25. }

26. b

27. var dir = dirInfo.GetDirectories()

28. .AsParallel<DirectoryInfo>();

29. dir.ForAll<DirectoryInfo>(ProcessDir());

30. b

31. return act;

32. }

33. }

You need to populate a words object with the list of words and the number of occurrences of each word,
and also ensure that the updates to the ConcurrentDictionary object can happen in parallel. Which code
segment should you insert at line 24?

A) words.AddOrUpdate(word, 1, (s, n) => n + 1);

B)
int value;
if(words.TryGetValue(word, out value))
{
words[word] = value++;
}
else
{
words[word] = 1;
}

461

CHAPTER 16 = PRACTICE EXAM QUESTIONS

0
var value = words.GetOrAdd(word, 0);
words[word] = value++;

D)

var value = words.GetOrAdd(word, 0);

words.TryUpdate(word, value + 1, value);

Question 18

Suppose you have the following code snippet:

01. class Person

02. {

03. public int ID { get; set; }

04. public string Name { get; set; }

05. public int Age { get; set; }

06. }

07. Dictionary<int, Person> people = new Dictionary<int, Person>
08. {

09. {21, new Person {ID = 1, Name="Ali", Age = 22 } },
10. {22, new Person {ID = 2, Name="Sundus", Age = 21 } },
11. {23, new Person {ID = 3, Name="Asad", Age = 22 } },
12. {24, new Person {ID = 5, Name="Naveed", Age = 21 } },
3. }

14.

15. people.Add(24, new Person { ID = 6, Name = "Malik", Age = 10 });

The application fails at line 15 with the following error message: "An item with the same key has already
been added.” You need to resolve the error.
Which code segment should you insert at line 14?

A) if(!people.ContainsKey(24))

B) foreach (Person person in peopleValues.Where(t=>t.ID !=24))

C) foreach (KeyValuePair<int, Person> key in people.Where(t=>t.Key != 24))
D) foreach (int key in people.Keys.Where(k=>k!=24))

Question 19

Suppose you have the following code segment:

01. Arraylist arrays = new Arraylist();
02. int i = 10;

03. int j;

04. arrays.Add(i);

05. j = arrays[0];

462

CHAPTER 16 © PRACTICE EXAM QUESTIONS
You need to resolve the error that occurs at line 05 ("Cannot implicitly convert type object to int"). You
need to ensure that the error gets removed. Which code should you replace with in line 05?
A) j=arrays[0] is int;
B) j=((List<int>)arrays) [0];
C) j=arrays[0].Equals(typeof(int));
D) j=(int) arrays[0];

Question 20

Suppose you're writing a method that retrieves the data from an MS Access 2013 database. The method must
meet the following requirements:

Be read-only.
Be able to use the data before the entire data set is retrieved.

Minimize the amount of system overhead and the amount of memory usage.

Which type of object should you use in the method?
A) SqlDataAdapter
B) DataContext
C) DbDataAdapter
D) OleDbDataReader

Question 21

Which of the following extension methods is used to join two queries?

A) join()
B) group()
C) skip()

D) aggregate()

Question 22
Which of the following keywords is used to filter the query?
A) select
B) where
C) from
D) join

463

CHAPTER 16 = PRACTICE EXAM QUESTIONS

Question 23

Which of the following collection types is used to retrieve data in a Last In First Out (LIFO) way.
A) Queue
B) HashTable
C) Stack

D) Dictionary

Question 24
Which method is used to return a specific number of objects from a query result?
A) Take()
B) Skip()
C) Join()
D) Select()

Question 25

In entity framework, which class is responsible for maintaining the bridge between a database engine and
C# code?

A) DbContext
B) Attribute

C) DbContextTransaction

D) DbSet

Answers
1. A
2. A
3. B
4. D
5. C
6. B,C
7. A
8. A
9. B
10. B
1. A

464

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.

o "W W >

> > O © > O g = = 0

@]

CHAPTER 16 ' PRACTICE EXAM QUESTIONS

465

Index

A

Abstract method, 77, 88
AddValue() method, 316
ADO.NET, 319
disconnected layer
DataAdapter, 326
DataSet, 326
DataTable, 326
entity framework, 328
layer connection
ExecuteNonQuery, 323
ExecuteReader, 325
ExecuteScalar, 324
ExecuteXMLReader, 326
Anonymous
method
argument, 165
syntax, 164
types, 51
ASMX web service
add() methods, 339, 341
creation, 337
proxy and consume, 342
SampleService.asmx file, 339-340
vs. WCF web service, 343
web application project, 338
AsParallel() method, 265
Assemblies, 365
C# (see Reflection)
DLL (see Dynamic Link Library (.DLL))
executeable (.EXE), 370
GAC (see Global Assembly
Cache (GAQ))
manifest file, 365
private, 366
public/shared, 366
source code, 365
types, 365
use of, 366
WinMD, 371

© Ali Asad and Hamza Ali 2017

AssemblyInfo.cs, 373

Asymmetric encryption, 351
Asynchronous (asyn method), 301
AttributeUsage, 390

Await() method, 257

B

BinaryReader and BinaryWriter, 299-300
Binary serialization
NonSerialized attribute, 308
serializer, 307
source code, 307
ues of, 307
Boxing, 95, 97, 150
BufferedStream() method, 298

C

CancellationToken() method, 251
Character pattern, 285
Clone() method, 143
Code access security (CAS), 358
Collection
custom generic collection, 150
kind of, 106
System.Collections
ArrayList, 106
Hashtable, 108
namespaces, 106
queue, 109
Stack, 111
System.Collections.Concurrent, 120
System.Collections.Generics
classes, 112
Dictionary<TKey, TValue>, 115
List<T>, 113
Queue<T>, 116
Stack<T>, 118
CompareTo() method, 143
Concurrent collection, 260

A. Asad and H. Ali, The C# Programmer’s Study Guide (MCSD), DOI 10.1007/978-1-4842-2860-9

467

INDEX

ConsoleTraceListener() method, 406
Continuations
nested task, 243
TaskContinuationOption, 242
Task.ContinueWith method, 240
Task<TResult>, 241
C# programming
arithmetic operator, 6
array
jagged array, 12, 14
multi dimension, 11-12
single dimension, 9, 11
types, 9
attributes
AttributeUsage, 390
calculator application, 33
creation, 385
reflection, 385
syntax, 385
boolean logical operators, 7
data types, 5
decision structures
conditions, 15
If Else {}, 16-17
IfElse If {}, 17-18
If {} structure, 15-16
Switch {}, 18-19
expression, 7
fundamentals, 1
jump statements, 23
break statement, 26-27
continue, 27
Goto, 23-26
return, 27-28
loops
do while(), 21-22
for(), 22
foreach(), 22-23
types, 20
while(), 20-21
methods
code structure, 29
named argument, 29
optional argument, 29
parameter_list, 29
Return_Type, 29
sum, 29
syntax, 28-29
operators, 19

conditional operator (? \:), 19-20
null coalescing operator (??), 20

pass by reference
out keyword, 31-32
ref keyword, 30-31

pass unlimited method argument, 32-33

program flow, 15

468

program structure and language
building blocks, 1
console project, 2
program code, 4
Program.cs, 4
template, 3
relational operator, 6
report card application, 34
type casting, 8
explicit conversion, 8
implicit conversion, 8
variables, 6
code snippet, 5
syntax, 5
var keyword, 9
CreateDirectory() method, 292
Create types
enum(enumeration)
integer, 41
syntax, 40
struct
code structure, 42
constructor, 43
syntax, 42
this keyword, 44
Cryptanalysis, 348
Cryptography
algorithm, 360
asymimetric encryption, 351
communication, 347
cryptanalysis, 348
digital certification, 357
encrypt and decrypt data, 352
encryption, 347
encrypt stream, 354
hashing (see Hashing)
key management
asymmetric keys, 353
symmetric keys, 353
pictorial representation, 348
ProtectedData class

create and install certificate, 357

Protect() method, 355
static method, 355
Unprotect method, 356
symmetric encryption, 349
System.Security Namespace, 357
Custom exceptions, 284

D

Data access implementation, 451
DataAdapter, 326
Database, 319

ADO.NET, 319

command, 323

connection
C#, 322
DataSet, 320-321
data source, 321
dynamic building string, 322
Sample.xsd, 321-322
data providers, 320
JSON data, 337
Web services (see Web services)
XML data, 335
DataContractJsonSerializer, 313-314
Debug application and implement
security, 443
Debugging
build configurations, 397
compiler directives/preprocessor, 398
debug mode, 397
#define, 398
#error, 400
#if #elif #else and #endif, 399
#line, 401
PDBs and symbols, 401
process, 395
release mode, 397
source code, 396
Declarative, 358
Delegate
built-in types, 157
action, 157
Action<>, 158
Func<>, 159
Predicate<T>, 160
function pointers, 153
getinvocationlist method, 156
invoke method, 154
multicast, 154
overwrite, 163
problems, 163
remove method's reference, 155
source code, 153
store reference, 154
variance, 161
contravariance, 162
covariance, 161
Delete() method, 293
Deserialization. See Serialization and
deserialization
Diagnostics
debug mode, 402
instrument of application, 402
logging and tracing
debug and trace class, 403
phases, 403
profiling
creation, 415
hand, 413

performance counter, 414
types, 411
Visual Studio tool, 411
trace listeners

ConsoleTraceListener, 406
EventLogTraceListener, 408
framework, 406
TextWriterTraceListener, 407

Directorylnfo, 292

DoComplicatedTaskAsync() method, 255, 257

Dynamic Link Library (.DLL), 366
class library, 367
creation, 366
main method, 370
references folder, 370
source code, 367
use of, 368
Dynamic type, 52

E

Encapsulation
access specifiers, 66
internal, 69
internal protected, 69
private, 67
protected, 68
public, 66
data protection, 70
auto property, 72
full property, 71
indexers, 72
properties, 70
validate indexer data, 74
Encryption, 347
Encrypt stream, 354
EndsWith() method, 143
Entity framework (EF), 328
approaches, 328
connection buuton, 330
database objects, 332
data model, 329
data source/connection string, 331
edmx file, 333
find, update and delete option, 334-335
insertion, 334
model contents, 330
ORM, 328
source code, 333
Equals() method, 144
Event, 168
advantages of, 174
built-in delegates
EventHandler, 170
INotifyPropertyChanged, 173
PropertyChangedEventHandler, 173

INDEX

469

INDEX

Event (cont.)
handling event, 169
publisher, 168
student report card application, 175
subscriber, 168
EventHandler, 170
EventLogTraceListener, 408
Exception handling, 271. See also Handling
exception
application input validation
character pattern cheatsheet, 285
regex, 286
regular expressions, 285
custom exceptions, 284
.NET exceptions, 271
throw, 280
Executeable (.EXE), 370
ExecuteNonQuery() method, 324
ExecuteReader() method, 325
ExecuteScalar() method, 324
ExecuteXMLReader() method, 326
Explicit interfaces, 80
EXtensible markup language (XML).
See also XML data
classes, 191
creation, 191
Elements() method, 193
read, 193

F

File I/0 operation, 291

async and await, 301

directories, 292

drive, 291

files
AppendText() method, 295
classes, 295
File/Filelnfo, 294
GetFiles() method, 294

network communication, 300-301

reader and writer
BinaryReader and BinaryWriter, 299-300
StreamReader and StreamWriter, 300
StringReader and StringWriter, 299

stream (see Stream)

Framework interfaces

advantages, 120

built-in interfaces, 120

ICollection, 129

ICollection<T>, 129

IComparable, 132

IComparable<T>, 133

IComparer, 135

IComparer<T>, 136

470

IEnumerable, 120
IEnumerable<T>, 122
IEnumerator, 124
IEnumerator<T>, 126
IEquatable<T>, 138
IList, 130

IList<T>, 131

G

Gacutil.exe, 373
Garbage collection (GC)
benefits, 198
generations, 198
managed heap, 198
memory leaks, 203
managed object’s references, 203
missing unsubscription, 204
static reference, 203
unmanaged resource, 203
runs, 198
steps, 199
unmanaged resources
call dispose, 201
disposable Pattern, 202
IDisposable, 199
try/finally block, 200
Generics
constraints (generic type parameters), 98
definition, 97
kinds of, 99
methods, 104
GetDrives() method, 292
GetEnumerator() method, 120
GetObjectData() method, 316
GetProperties() method, 384
Global Assembly Cache (GAC), 366, 372
AssemblyInfo.cs, 373
assembly version
build number, 374
development lifecycle, 374
major version, 374
minor version, 374
revision, 374
Gacutil.exe, 373
installation, 372
steps, 373
strong name key, 372

H

Handling exception, 272
multiple catch blocks, 279
try-catch, 272
try-catch (ExceptionType), 275

try-catch (ExceptionType ex), 273
try-catch-finally, 276
try-finally, 278
Hashing
algorithms, 358-359
salt, 360
source code, 359

IEnumerable interface, 120
ILdasm.exe, 392
Imperative, 358
Implicit interfaces, 79
IndexOf() method, 144
Inheritance

derived class, 75

multi level inheritance, 76
Insert() method, 144
Invoke() method, 382
ISerializable, 315

J, K

JavaScriptSerializer, 314

JSON (JavaScript Object Notation) serialization
AJAX-enabled endpoints, 313
data, 337
DataContractJsonSerializer, 313-314
JavaScriptSerializer, 314

L

Lambda expression, 166
Language Integrated Query (LINQ)

aggregation, 180-181, 190
average function, 190
count function, 190
Max function, 190
Min function, 191

CRUD operation, 195

dataset, 178

entities, 178

features, 183

filtering operator, 179

fluent/method extension

syntax, 181

grouping operator, 180

joining operator, 179

Method Syntax, 181

object, 178

objectives, 177

operators
filtering operator, 187
grouping operator, 189

INDEX

joining operator, 188
overview of, 186
partition operator, 189
projection operator, 187
select, 187
SelectMany, 188
skip, 190
take, 189
parallel LINQ, 178
partition operator, 180
projection operator, 179
query operation, 184
creation, 184
data source, 184
deferred execution, 185
execution, 185
immediate execution, 186
query syntax, 182
SQL, 178
syntax, 181
types of, 178
use of, 177
XML, 178 (see also EXtensible markup
language (XML))
LastIndexOf() method, 145
List<T>. See Type-safe collection
LongRunningMethod, 423

Managed memory heap, 49, 198
Memory leaks, 203
MemoryStream, 298
Method overloading, 81
by parameter type, 82
length of parameter, 83
Move() method, 293
Multithreading
CancellationToken, 251
dead lock, 249
handle synchronization variables, 246
interlocked class, 248-249
lock(object), 246
monitor, 247-248
synchronization, 245

N

Nested task
AttachedToParent option, 244
detached child task, 243
Network communication, 300-301
normal_methodAsync()
method, 257
Nullable type, 53

471

INDEX

(0

Object life cycle
creation, 197
deletion, 197
fundamentals, 197
Object oriented programming (OOP), 65
abstract classes, 77
encapsulation (see Encapsulation)
inheritance
derived class, 75
multi level, 76
interface, 78
explicit, 80
implicit, 79
PIE, 66
polymorphism (see Polymorphism)
relationship definition, 65
Steve jobs laundry system, 90
transformer, 90
Object Relational Mapper (ORM), 328
Operator overloading, 83
binary operators, 85
comparison operators, 86
unary operators, 84

PQ

Parallel programming
concurrent collection, 260
generic collections, 260
multiple cores, 260
Parallel.For, 263
Parallel.Foreach, 264
PLINQ, 265
prevent multiple threads, 262

Polymorphism
dynamic, 87

abstract, 88
virtual method, 87
static
method overloading, 81
operator overloading, 83
types, 81
Polymorphism, Inheritance and
Encapsulation (PIE), 66

Program Database File (PDB), 401

Program management flow, 423
application creation, 425
atomic operation, 429
await keyword, 426
boolean value, 425
calling code, 427
catch blocks, 424
code blocks, 428
collections, 428

472

custom exception, 424

exception handling, 426

foreach loop, 427

inner exception, 429

integer parameter, 430

keywords, 425-426

lambda expression, 428

long-running asynchronous operation, 428

LongRunningMethod, 423

loops, 426

methods, 426

property/method, 430

switch statement, 427

task, 427

thread, 427

throw exception, 424
PropertyChangedEventHandler, 173
Protect() method, 355
Public key infrastructure (PKI), 357

R

ReadString() method, 300
Reflection, 375
C#
code (class and method), 385
constructor, 389
properties, 387
get and set value, 379
get private members, 383
invoke method, 381
metadata, 377
method, 378
properties and methods, 377
read current assembly, 375
static members, 384
types definition, 376
Regex, 286
Remove() method, 145
Replace() method, 145

S

Salt hashing, 360
SecureString class, 361
SecureStringToGlobalAllocUnicode() method, 362
Serialization and deserialization, 305
BinaryFormatter, 306
binary serialization, 307
explanation, 306
ISerializable, 315
JSON serialization, 313
performance comparison, 316
pictorial representation, 305
XML serialization, 308
XmlSerializer, 306

Split() method, 145
SqlConnectionStringBuilder class, 322
StartsWith() method, 145
StopWatch() method, 414
Stream
BufferedStream() method, 298
FileStream
File/Filelnfo class, 296
parameters, 296
Write() method, 296
MemoryStream, 298
tasks, 295
types, 295
StreamReader and StreamWriter, 300
StringBuilder, 141
StringReader and StringWriter, 141, 299
String methods
Clone(), 143
CompareTo(), 143
EndsWith(), 143
Equals(), 144
IndexOf(), 144
Insert(), 144
LastIndexOf(), 145
Remove(), 145
Replace(), 145
soruce code, 140
Split(), 145
StartsWith(), 145
StringBuilder, 141
String.Format method, 147
control alignment, 149
standard numeric formats, 148
StringReader, 141
StringWriter, 142
Substring(), 146
ToCharArray(), 146
ToLower(), 144
ToString(), 146
ToUpper(), 144
Trim(), 146
StringWriter() method, 142
Substring() method, 146
Symmetric encryption, 349
System.Collections
ArrayList, 106
Hashtable, 108
namespaces, 106
queue, 109
Stack, 111
System.Collections.Concurrent, 120
System.Collections.Generics
classes, 112
Dictionary<TKey, TValue>, 115
List<T>, 113

INDEX

Queue<T>, 116

Stack<T>, 118
System.Object type, 50-51
System.Security namespace, 357
System.Threading.Thread class, 208

T

Tasks
actionMethod, 225
chain multiple tasks (see Continuations)
creation, 225
features, 223
lambda expression, 228
methods and properties, 224
Task.Factory.StartNew, 226
Task<Result> class
funcMethod, 228
lambda expression, 231-232
Task<T>.Factory.StartNew, 230
Task.Run<int>, 231
values, 229
var & Task.Run<T>, 232-234
Task.Run, 227
wait (see Wait methods)
TextWriterTraceListener() method, 407
Thread.Join() method, 210
Threads
common _count, 221
count variable, 219
creation, 208
foreground and background, 211
join method, 211
lifecycle, 223
main thread, 207
methods and properties, 208
multithreaded application, 207 (see also
Multithreading)
parameterize method, 214
states of, 207
task (see Tasks)
Thread.Join() method, 210
thread pool method, 221
ThreadPriority, 216
Thread.Sleep(milliseconds), 215
ThreadStatic method, 218
workflow, 209
Thread.Sleep(milliseconds), 215
Thread.Start() method, 208
Throwing exceptions
inner exception, 283
re-thrown, 282
source code, 280
ToCharArray() method, 146
ToLower() method, 144

473

INDEX

ToString() method, 146
ToUpper() method, 144
ToXmlString() method, 352
TraceError() method, 405
Tracelnformation() method, 405
TraceSource() method, 405
Trim() method, 146
Type.GetFields() and Type.GetMethods() methods,
383
Types
anonymous, 51
array object, 440
assembly, 440
C# code, 434
check/compare, 441
class
base constructor, 47
constructor, 46
syntax, 45
class library assembly, 439
code segment, 431, 439
concatenates, 436
conversion, 56
as operator, 56
explicit, 56
implicit, 56
is operator, 57
UTC, 438
create (see Create types)
creation, 431
custom attribute, 442
Demo(B b) method, 439
Demo() method, 434
dynamic type, 52
extension method, 440
FirstName property, 437
garbage collector method, 438-439
interfaces, 441
IVehicle interface, 435
JSON data, 433
keywords, 440
memory management, 48
heap, 48
reference, 48
register, 50
Stack, 49
value, 48
nullable type
?? operator, 53
Run() methods, 432
Save() method, 435
statement, 442
static type, 54
extenstion methods, 55
static constructor, 54
string property, 437

474

System.Object, 50-51
temprature convertor application, 60
throw exceptions, 437
understand types, 39
unmanaged resource, 442
user define conversion
definition, 57
explicit, 58-59
implicit, 57
value converts, 437
WriteObject() method, 433
wrong conversion, 441
Type-safe collection, 113

U

Unboxing, 96, 150
Understand types, 39
Unprotect() method, 356
User Interface (UI)
async and await keywords
event-method, 255
execute click event, 254
lambda expression, 258
normal method, 256
steps, 254
Task.Delay(milisec), 259
Task<T>, 257
workflow, 256
cross threading
manipulation, 259
this.BeginInvoke, 260
empty windows, 253
HTML file, 267
steps, 253
time-consuming operation, 254
user events, 253

\"

Virtual method, 87

w

Wait methods, 234
Task.Wait(), 234
Task.WaitAll(), 236
Task.WaitAll(task[], milliseconds), 237
Task.WaitAny(), 238
Task.WaitAny(task[], milliseconds), 239
Task.Wait(milliseconds), 235
Web services
ASMX
creation, 337
Proxy and Consume, 342
SampleService.asmx, 339

SampleService.asmx file, 340
WCEF vs. ASMX Web Service, 343
web application project, 338
web service, 339
WCE, 343
Windows Communication Foundation
(WCF), 343
WinMD, 371

XY

XML data, 335
XmlDocument, 335-336
XmlReader, 335-336

INDEX

XML serialization
attributes, 310
DataContractSerializer and XmlSerializer,
312-313
MSDN, 308
serialized object, 312
source code, 310-311
XmlElement, 310
XmlSerializer, 309-310
XmlWriter, 335-336

V4

ZeroFreeGlobalAllocUnicode() method, 362

475

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Foreword
	Chapter 1: Fundamentals of C #
	Program Structure & Language Fundamentals
	First Program in C#
	Variables & Data Types
	Data Types in C#
	Variables in C#

	Operator in C#
	Arithmetic Operator
	Relational Operator
	Boolean Logical Operators

	Expression in C#
	Type Casting
	Implicit Conversion
	Explicit Conversion

	var keyword
	Array in C#
	Single Dimension Array
	Multi Dimension Array in C#
	Jagged Array in C#

	Implement Program Flow
	Decision Structure
	If {} Structure in C#
	If Else {} Structure in C#
	If Else If {} Structure
	Switch {} Structure in C#

	Decision Operators
	Conditional Operator (?:)
	Null Coalescing Operator (??)

	Loops in C#
	While Loop
	Do-while Loop
	For Loop
	Foreach loop

	Jump Statements in C#
	Goto
	Break
	Use break statement in loop

	Continue
	Use continue statement in loop

	Return
	Use return in method (a)
	Use return Statement in Main Method (b)

	Methods in C#
	Named Argument
	Optional Argument
	Pass by Reference with ref Keyword
	Pass by Reference with out Keyword
	Use Params Array to Pass Unlimited Method Argument

	Summary
	Code Challenges
	Challenge 1: Develop an Arithmetic Calculator Application
	Challenge 2: Develop a Student Report Card Application

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Answers

	Chapter 2: Types in C#
	Understand Types
	Create Types
	Enum
	Enum and Integer
	Override Constant’s Values
	Supporting Types

	Struct
	Constructor in struct
	this keyword

	Class
	Constructor in Class
	Base Constructor

	Types and Memory Management
	Value Type
	Reference Type
	Heap
	Stack
	Register

	Special Types in C#
	System.Object Type
	Anonymous Type
	Dynamic Type
	Nullable Type
	?? Operator

	Static Type
	Static Constructor
	Extension Methods

	Type Conversion
	Implicit Type Conversion
	Explicit Type Conversion
	as operator
	is operator

	User Defined Type Conversion
	Implicit User Defined Conversion
	Explicit User Defined Conversion

	Summary
	Code Challenges
	Develop Temperature Converter Application

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Answers

	Chapter 3: Getting Started with Object Oriented Programming
	Introduction to Object Oriented Programming
	OOP in a PIE
	Encapsulation
	Access Specifiers
	Public
	Private
	Protected
	Internal
	Internal Protected

	Data Protection
	Properties
	Full Property
	Auto Property

	Indexers

	Inheritance
	Multi Level Inheritance

	Abstract Class
	Interface
	Implement interface implicitly
	Implement interface explicitly

	Polymorphism
	Static Polymorphism
	Method Overloading
	Overload Method by Parameter Type
	Overload Method by length of parameter

	Operator Overloading
	Overload Unary Operators
	Overload Binary Operator
	Overload Comparison Operator

	Dynamic Polymorphism
	Virtual Method
	Abstract method

	Summary
	Code Challenges
	Challenge 1: Develop a Transformer
	Tip

	Challenge 2: Develop Steve Jobs Laundry System

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Answers

	Chapter 4: Advance C#
	Boxing and Unboxing
	Boxing
	Unboxing
	Performance of Boxing & Unboxing

	Generics
	Constraints on Generic Type Parameters
	Generic Methods

	Collection
	System.Collections
	ArrayList
	Hashtable
	Queue
	Stack

	System.Collections.Generics
	List<T>
	Dictionary<TKey, TValue>
	Queue<T>
	Stack<T>

	System.Collections.Concurrent

	Implement Framework Interface
	IEnumerable & IEnumerable<T>
	IEnumerable
	Explanation

	IEnumerable<T>

	IEnumerator & IEnumerator<T>
	IEnumerator
	IEnumerator<T>

	ICollection & ICollection<T>
	ICollection
	ICollection<T>

	IList & IList<T>
	IList
	IList<T>

	IComparable & IComparable<T>
	IComparable
	IComparable<T>

	IComparer & IComparer<T>
	IComparer
	IComparer<T>

	IEquatable<T>

	Working with Strings
	StringBuilder
	StringReader
	StringWriter
	Enumerate String Methods
	ToString()

	String.Format Method
	Special Formats to Display Object Value
	Standard Numeric Formats
	Control Spacing
	Control Alignment

	Summary
	Code Challenges
	Challenge 1: Develop a Custom Generic Collection.

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 5: Implementing Delegates & Events
	Delegate
	Multicast Delegate
	Common Built-in Delegates
	Action
	Action<>
	Func<>
	Predicate<T>

	Variance in Delegate
	Covariance
	Contravariance

	Problems with Delegate

	Anonymous Method
	Lambda Expression
	Event
	Use Built-in Delegates to Implement Events
	EventHandler
	PropertyChangedEventHandler

	Advantages of Events

	Summary
	Code Challenges
	Challenge1: Student Report Card Application

	Practice Exam Questions
	Challenge 1: Invoke an event if a person’s name is changed
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 6: Deep Dive into LINQ
	Introduction to LINQ
	Why we use LINQ
	Types of LINQ
	LINQ to Object
	LINQ to Entities
	LINQ to Dataset
	LINQ to SQL
	LINQ to XML
	Parallel LINQ

	Understanding LINQ Operators
	Filtering Operator
	Projection Operator
	Joining Operator
	Grouping Operator
	Partition Operator
	Aggregation

	Understand LINQ Syntax
	Method Syntax
	Query Syntax

	Working with LINQ Queries
	C# Features to Support LINQ
	Parts of Query Operation
	Data Source
	Creation of Query
	Query Execution
	Deferred Execution
	Immediate Execution

	LINQ Operators to Query Data
	Filtering Operator
	Projection Operator
	Select
	SelectMany

	Joining Operator
	Grouping Operator
	Partition Operator
	Take
	Skip

	Aggregation
	Average
	Count
	Max
	Min

	LINQ to XML
	Create XML data
	Update XML data
	Read XML data

	Summary
	Code Challenges
	Challenge 1: Perform CRUD Operation using LINQ to Object

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 7: Manage Object Life Cycle
	Fundamentals of Object Life Cycle
	Creation of an Object
	Deletion of an Object

	Fundamentals of .NET Garbage Collection
	When Garbage Collection Run
	Garbage Collector and Managed Heap
	Generations
	Generation 0
	Generation 1
	Generation 2

	Steps Involved in Garbage Collection

	Manage Unmanaged Resource
	Implement IDisposable to Release Unmanaged Resource
	Call Dispose Inside try/finally Block
	Call Dispose Inside Using Statement
	Disposable Pattern

	Memory Leaks
	Manage Memory Leaks
	Holding References to Managed Objects for a Long Time
	Unable to manage unmanaged resource
	Static reference
	Event with missing unsubscription

	Summary
	Code Challenges
	Challenge 1: Print Html Code of google.com

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 8: Multithreaded, Async & Parallel Programming
	Working with Threads
	Create and Start a Thread
	Thread.Join()
	Foreground & Background Thread
	Pass a Parameterize Method to a Thread
	Thread.Sleep(milliseconds)
	ThreadPriority
	ThreadStatic
	Thread Pool

	Working with Tasks
	Create and Run a Task
	Create and Run a Task<Result>
	Wait for One or More Task
	Task.Wait()
	Task.Wait(milliseconds)
	Task.WaitAll()
	Task.WaitAll(task[], milliseconds)
	Task.WaitAny()
	Task.WaitAny(task[], milliseconds)

	Chain Multiple Tasks with Continuations
	Use Task<TResult> with Continuation
	TaskContinuationOption

	Nested Task
	Detached Child Task
	Child Task Attached to Parent

	Synchronization of Variables in Multithreading
	Handle Synchronization of Variables in Multithreading
	lock(object)
	Monitor
	Interlocked

	Dead Lock
	CancellationToken

	Making UI Responsive
	How to Make UI Responsive with Async and Await
	Execute Click Event Asynchronously
	Execute Normal Method Asynchronously
	Use Await to Get Value from Task<T>
	Use Async Lambda
	Task.Delay(milisec)

	Prevent Application from Cross Threading

	Parallel Programming
	Concurrent Collection
	Parallel.For & Parallel.Foreach
	Parallel.For
	Parallel.Foreach

	PLINQ

	Summary
	Code Challenges
	Challenge 1: Develop a Windows Form Project to Display HTML

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Answers

	Chapter 9: Exception Handling and Validating Application Input
	Introduction to Exception
	Handling Exception
	try-catch
	try-catch (ExceptionType ex)
	try-catch (ExceptionType)
	try-catch-finally
	try-finally
	Use Multiple Catch Blocks to Handle Multiple Exceptions

	Throwing Exceptions
	Re-throwing an Exception
	Throwing an Exception with an Inner Exception

	Creating Custom Exceptions
	Validating Application Input
	Regular Expressions
	Character Pattern Cheatsheet
	Regex

	Summary
	Code Challenges
	Challenge 1: Validate Email, Phone Number, and Website

	Practice Exam Questions
	Question 1
	Question 2

	Question 3
	Answers

	Chapter 10: File I/O Operations
	Working with Drive
	Working with Directories
	Directory and DirectoryInfo

	Working with Files
	File and FileInfo

	Working with Stream
	FileStream
	Using FileStream with File/FileInfo Class
	Using FileStream Class

	MemoryStream
	BufferedStream

	Working with File Reader and Writer
	StringReader and StringWriter
	BinaryReader and BinaryWriter
	StreamReader and StreamWriter

	Communication over the Network
	Working with asynchronous File I/O
	Async and Await in File I/O

	Summary
	Code Challenges
	Challenge 1: Download and Save Image

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 11: Serialization and Deserialization
	Serialization and Deserialization
	Serialization
	Deserialization
	Pictorial Representation
	Explanation

	Binary Serialization
	Using Binary Serializer

	XML Serialization
	Using XML Serializer
	Using DataContract Serializer

	JSON Serialization
	Using DataContractJsonSerializer
	Using JavaScriptSerializer

	Custom Serialization
	Using ISerializable
	Explanation

	Serialization Performance Comparison
	Summary
	Code Challenges
	Challenge 1: Perform Deserialization

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 12: Consume Data
	Working with a Database
	ADO.NET
	Data Providers
	Connection
	Command

	Conceptual parts of ADO. NET
	Connected Layer
	ExecuteNonQuery
	ExecuteScalar
	ExecuteReader
	ExecuteXMLReader

	Disconnected Layer
	DataTable
	DataSet
	DataAdapter

	Entity Framework

	Consume XML and JSON Data
	XML Data
	JSON Data

	Working with Web Services
	ASMX Web Service
	Creating the Web Service
	Create Proxy and Consume the service

	WCF Web Service
	WCF web service vs. ASMX Web Service

	Summary
	Code Challenges
	Challenge 1: Create ASMX Web Service

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 13: Working with Cryptography
	Cryptography
	Encryption
	Cryptanalysis
	Pictorial Representation

	Types of Encryption
	Symmetric Encryption
	Asymmetric Encryption

	Implement Key management
	Symmetric Keys
	Asymmetric Keys

	Encrypt Stream
	Working with ProtectedData Class
	Protect()
	Unprotect

	Manage and Create Digital Certificates
	Create and Install Certificate

	Working with System.Security Namespace
	Code Access Security (CAS)
	Declarative
	Imperative

	Hashing
	Salt Hashing

	Choosing an appropriate Algorithm
	Working with SecureString Class
	Summary
	Code Challenges
	Challenge 1: Develop a simple window form application and perform Salt hashing

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 14: Assembly and Reflection
	Introduction to Assemblies
	When Code is Compiled
	Types of Assembly
	Private Assembly
	Public/Shared Aseembly

	Uses of Assembly

	Creating and Using Custom Assembly
	Dynamic Link Library (.DLL)
	Create a Custom .DLL
	Use a Custom .DLL

	Executeable (.EXE)

	WinMD Assembly
	Create WinMD Assembly

	Global Assembly Cache (GAC)
	Install an Assembly in GAC
	Strong Name
	Use Gacutil.exe

	AssemblyInfo.cs
	Versioning the Assembly
	Major Version
	Minor Version
	Build Number
	Revision

	Reflection in C#
	Working with Reflection
	Use Reflection to Read Current Assembly
	Use Reflection to Read all Types of an Assembly
	Use Reflection to Read Metadata of Properties and Methods
	Use Reflection to Get and Set Value of Object’s Property
	Use Reflection to Invoke a Method of an Object
	Use Reflection to Get Private Members
	Use Reflection to Get Static Members

	Attributes in C#
	Create a Custom Attribute
	Use Custom Attribute with Reflection
	Specify a Custom Attribute on a C# Code (Class, Method, etc)
	Declaring Properties in Custom Attribute Class
	Declaring Constructor in Custom Attribute Class

	Use AttributeUsage on Custom Attribute Class

	Use ILdasm.exe to View Assembly Content
	Summary
	Code Challenges
	Challenge 1: Install a .DLL to Global Assembly Cache

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 15: Debugging and Diagnostics
	Debugging
	Choose appropriate Build Type
	Creating and Managing Compiler Directives
	#define
	#if #elif #else and #endif
	#error
	#line

	Understand PDBs and Symbols

	Diagnostics
	Instrumenting an Application
	Logging and Tracing
	Working with Debug and Trace Class
	Working with Trace Listeners
	ConsoleTraceListener
	TextWriterTraceListener
	EventLogTraceListener

	Profiling the Application
	Profiling using Visual Studio Tool
	Profiling by Hand
	Profiling using Performance Counter
	Creating the Performance Counter
	Working with Performance Counter

	Summary
	Code Challenges
	Challenge 1: Perform tracing and logging in your application.
	Challenge 2: Implement Performance Counter in your application.

	Practice Exam Questions
	Question 1
	Question 2
	Question 3
	Answers

	Chapter 16: Practice Exam Questions
	Objective 1: Manage Program Flow
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	Question 21
	Question 22
	Question 23
	Question 24
	Question 25
	Answers

	Objective 2: Create and Use Types
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	Question 21
	Question 22
	Question 23
	Question 24
	Question 25
	Answers

	Objective 3: Debug Application and Implement Security
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	Question 21
	Question 22
	Question 23
	Question 24
	Question 25
	Answers

	Objective 4: Implement Data Access
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 11
	Question 12
	Question 13
	Question 14
	Question 15
	Question 16
	Question 17
	Question 18
	Question 19
	Question 20
	Question 21
	Question 22
	Question 23
	Question 24
	Question 25
	Answers

	Index

